mirror of
https://github.com/deepseek-ai/DeepSeek-Coder
synced 2024-12-05 02:24:46 +00:00
276 lines
12 KiB
Markdown
276 lines
12 KiB
Markdown
<p align="center">
|
||
<img width="1000px" alt="DeepSeek Coder" src="pictures/logo.png">
|
||
</p>
|
||
<p align="center"><a href="https://www.deepseek.com/">[<img src="pictures/home.png" width="20px"> Homepage]</a> | <a href="https://coder.deepseek.com/">[🤖 Chat with DeepSeek Coder] | <a href="https://huggingface.co/deepseek-ai">[🤗 Models Download]</a> | <a href="https://discord.gg/fUzxZTrd">[Discord]</a> | <a href="https://github.com/guoday/assert/blob/main/QR.png?raw=true">[Wechat(微信)]</a></p>
|
||
<hr>
|
||
|
||
|
||
### 1. Introduction of DeepSeek Coder
|
||
|
||
Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
|
||
|
||
<p align="center">
|
||
<img src="pictures/result.png" alt="result" width="70%">
|
||
</p>
|
||
|
||
- **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
|
||
|
||
- **Highly Flexible & Scalable**: Offered in model sizes of 1B, 5.7B, 6.7B and 33B, enabling users to choose the setup most suitable for their requirements.
|
||
|
||
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
|
||
|
||
- **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
|
||
|
||
|
||
### 2. Evaluation Results
|
||
We evaluate DeepSeek Coder on various coding-related benchmarks.
|
||
Only `pass@1` results on HumanEval (Python and Multilingual), MBPP, DS-1000 are reported here:
|
||
|
||
<p align="center">
|
||
<img src="pictures/table.png" alt="table" width="70%">
|
||
</p>
|
||
|
||
|
||
The result shows that DeepSeek-Coder-Base-33B significantly outperforms existing open-source code LLMs. Compared with CodeLlama-34B, it leads by 7.9%, 9.3%, 10.8% and 5.9% respectively on HumanEval Python, HumanEval Multilingual, MBPP and DS-1000.
|
||
Surprisingly, our DeepSeek-Coder-Base-7B reaches the performance of CodeLlama-34B.
|
||
And the DeepSeek-Coder-Instruct-33B model after instruction tuning outperforms GPT35-turbo on HumanEval and achieves comparable result with GPT35-turbo on MBPP.
|
||
|
||
More evaluation details can be found in the [Detailed Evaluation](#5-detailed-evaluation-results).
|
||
|
||
|
||
|
||
### 3. Procedure of Data Creation and Model Training
|
||
|
||
#### Data Creation
|
||
|
||
- Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data.
|
||
- Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies.
|
||
- Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication.
|
||
- Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability.
|
||
|
||
<img src="pictures/data_clean.png" alt="data_creation" width="100%">
|
||
|
||
#### Model Training
|
||
|
||
- Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. Models are pre-trained using 1.8T tokens and a 4K window size in this step.
|
||
- Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models (**DeepSeek-Coder-Base**).
|
||
- Step 3: Instruction Fine-tuning on 2B tokens of instruction data, resulting in instruction-tuned models (**DeepSeek-Coder-Instruct**).
|
||
|
||
<img src="pictures/model_pretraining.png" alt="model_pretraining" width="100%">
|
||
|
||
|
||
|
||
|
||
### 4. How to Use
|
||
Before proceeding, you'll need to install the necessary dependencies. You can do this by running the following command:
|
||
```
|
||
pip install -r requirements.txt
|
||
```
|
||
A demo is also available on the [🤗 Hugging Face Space](https://huggingface.co/spaces/deepseek-ai/deepseek-coder-7b-instruct), and you can run the demo locally using `app.py` in [demo](https://github.com/deepseek-ai/deepseek-coder/tree/main/demo) folder. (Thanks to all the HF team for their support)
|
||
|
||
Here are some examples of how to use our model.
|
||
|
||
#### 1)Code Completion
|
||
```python
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
import torch
|
||
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
|
||
input_text = "#write a quick sort algorithm"
|
||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||
outputs = model.generate(**inputs, max_length=128)
|
||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||
```
|
||
This code will output the following result:
|
||
```
|
||
def quick_sort(arr):
|
||
if len(arr) <= 1:
|
||
return arr
|
||
pivot = arr[0]
|
||
left = []
|
||
right = []
|
||
for i in range(1, len(arr)):
|
||
if arr[i] < pivot:
|
||
left.append(arr[i])
|
||
else:
|
||
right.append(arr[i])
|
||
return quick_sort(left) + [pivot] + quick_sort(right)
|
||
```
|
||
|
||
#### 2)Code Insertion
|
||
```python
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
import torch
|
||
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
|
||
input_text = """<|fim▁begin|>def quick_sort(arr):
|
||
if len(arr) <= 1:
|
||
return arr
|
||
pivot = arr[0]
|
||
left = []
|
||
right = []
|
||
<|fim▁hole|>
|
||
if arr[i] < pivot:
|
||
left.append(arr[i])
|
||
else:
|
||
right.append(arr[i])
|
||
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
|
||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||
outputs = model.generate(**inputs, max_length=128)
|
||
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
|
||
```
|
||
This code will output the following result:
|
||
```
|
||
for i in range(1, len(arr)):
|
||
```
|
||
|
||
#### 3)Chat Model Inference
|
||
```python
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True).cuda()
|
||
messages=[
|
||
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
|
||
]
|
||
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
|
||
# 32021 is the id of <|EOT|> token
|
||
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32021)
|
||
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
||
```
|
||
This code will output the following result:
|
||
```
|
||
Sure, here is a simple implementation of the Quick Sort algorithm in Python:
|
||
|
||
def quick_sort(arr):
|
||
if len(arr) <= 1:
|
||
return arr
|
||
else:
|
||
pivot = arr[0]
|
||
less_than_pivot = [x for x in arr[1:] if x <= pivot]
|
||
greater_than_pivot = [x for x in arr[1:] if x > pivot]
|
||
return quick_sort(less_than_pivot) + [pivot] + quick_sort(greater_than_pivot)
|
||
|
||
# Test the function
|
||
arr = [10, 7, 8, 9, 1, 5]
|
||
print("Original array:", arr)
|
||
print("Sorted array:", quick_sort(arr))
|
||
|
||
This code works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The pivot element is then in its final position. The process is then repeated for the sub-arrays.
|
||
```
|
||
|
||
#### 4)Repository Level Code Completion
|
||
```python
|
||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
|
||
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
|
||
|
||
input_text = """#utils.py
|
||
import torch
|
||
from sklearn import datasets
|
||
from sklearn.model_selection import train_test_split
|
||
from sklearn.preprocessing import StandardScaler
|
||
from sklearn.metrics import accuracy_score
|
||
|
||
def load_data():
|
||
iris = datasets.load_iris()
|
||
X = iris.data
|
||
y = iris.target
|
||
|
||
# Standardize the data
|
||
scaler = StandardScaler()
|
||
X = scaler.fit_transform(X)
|
||
|
||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
||
|
||
# Convert numpy data to PyTorch tensors
|
||
X_train = torch.tensor(X_train, dtype=torch.float32)
|
||
X_test = torch.tensor(X_test, dtype=torch.float32)
|
||
y_train = torch.tensor(y_train, dtype=torch.int64)
|
||
y_test = torch.tensor(y_test, dtype=torch.int64)
|
||
|
||
return X_train, X_test, y_train, y_test
|
||
|
||
def evaluate_predictions(y_test, y_pred):
|
||
return accuracy_score(y_test, y_pred)
|
||
#model.py
|
||
import torch
|
||
import torch.nn as nn
|
||
import torch.optim as optim
|
||
from torch.utils.data import DataLoader, TensorDataset
|
||
|
||
class IrisClassifier(nn.Module):
|
||
def __init__(self):
|
||
super(IrisClassifier, self).__init__()
|
||
self.fc = nn.Sequential(
|
||
nn.Linear(4, 16),
|
||
nn.ReLU(),
|
||
nn.Linear(16, 3)
|
||
)
|
||
|
||
def forward(self, x):
|
||
return self.fc(x)
|
||
|
||
def train_model(self, X_train, y_train, epochs, lr, batch_size):
|
||
criterion = nn.CrossEntropyLoss()
|
||
optimizer = optim.Adam(self.parameters(), lr=lr)
|
||
|
||
# Create DataLoader for batches
|
||
dataset = TensorDataset(X_train, y_train)
|
||
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
||
|
||
for epoch in range(epochs):
|
||
for batch_X, batch_y in dataloader:
|
||
optimizer.zero_grad()
|
||
outputs = self(batch_X)
|
||
loss = criterion(outputs, batch_y)
|
||
loss.backward()
|
||
optimizer.step()
|
||
|
||
def predict(self, X_test):
|
||
with torch.no_grad():
|
||
outputs = self(X_test)
|
||
_, predicted = outputs.max(1)
|
||
return predicted.numpy()
|
||
#main.py
|
||
from utils import load_data, evaluate_predictions
|
||
from model import IrisClassifier as Classifier
|
||
|
||
def main():
|
||
# Model training and evaluation
|
||
"""
|
||
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
|
||
outputs = model.generate(**inputs, max_new_tokens=140)
|
||
print(tokenizer.decode(outputs[0]))
|
||
```
|
||
|
||
---
|
||
In the following scenario, the Deepseek-Coder 6.7B model effectively calls a class **IrisClassifier** and its member function from the `model.py` file, and also utilizes functions from the `utils.py` file, to correctly complete the **main** function in`main.py` file for model training and evaluation.
|
||
|
||
![Completion GIF](pictures/completion_demo.gif)
|
||
|
||
### 5. Detailed Evaluation Results
|
||
|
||
The reproducible code for the following evaluation results can be found in the [Evaluation](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation) directory.
|
||
#### 1)Multilingual HumanEval Benchmark
|
||
![HumanEval](pictures/HumanEval.png)
|
||
|
||
#### 2)MBPP Benchmark
|
||
<img src="pictures/MBPP.png" alt="MBPP" width="40%">
|
||
|
||
#### 3)DS-1000 Benchmark
|
||
![DS-1000](pictures/DS-1000.png)
|
||
|
||
#### 4)Program-Aid Math Reasoning Benchmark
|
||
![Math](pictures/Math.png)
|
||
|
||
|
||
### 6. License
|
||
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
|
||
|
||
See the [LICENSE-CODE](LICENSE-CODE) and [LICENSE-MODEL](LICENSE-MODEL) for more details.
|
||
|
||
### 6. Contact
|
||
|
||
If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).
|
||
|