DeepSeek-Coder/README.md

276 lines
12 KiB
Markdown
Raw Normal View History

2023-11-02 14:07:09 +00:00
<p align="center">
2023-11-02 15:16:57 +00:00
<img width="1000px" alt="DeepSeek Coder" src="pictures/logo.png">
2023-11-02 14:07:09 +00:00
</p>
2023-11-03 15:43:08 +00:00
<p align="center"><a href="https://www.deepseek.com/">[<img src="pictures/home.png" width="20px"> Homepage]</a> | <a href="https://coder.deepseek.com/">[🤖 Chat with DeepSeek Coder] | <a href="https://huggingface.co/deepseek-ai">[🤗 Models Download]</a> | <a href="https://discord.gg/fUzxZTrd">[Discord]</a> | <a href="https://github.com/guoday/assert/blob/main/QR.png?raw=true">[Wechat(微信)]</a></p>
2023-11-02 14:07:09 +00:00
<hr>
2023-11-03 13:01:52 +00:00
### 1. Introduction of DeepSeek Coder
2023-11-02 14:07:09 +00:00
Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
<p align="center">
2023-11-02 14:23:07 +00:00
<img src="pictures/result.png" alt="result" width="70%">
2023-11-02 14:07:09 +00:00
</p>
- **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
- **Highly Flexible & Scalable**: Offered in model sizes of 1B, 5.7B, 6.7B and 33B, enabling users to choose the setup most suitable for their requirements.
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
- **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
### 2. Evaluation Results
We evaluate DeepSeek Coder on various coding-related benchmarks.
Only `pass@1` results on HumanEval (Python and Multilingual), MBPP, DS-1000 are reported here:
<p align="center">
<img src="pictures/table.png" alt="table" width="70%">
</p>
The result shows that DeepSeek-Coder-Base-33B significantly outperforms existing open-source code LLMs. Compared with CodeLlama-34B, it leads by 7.9%, 9.3%, 10.8% and 5.9% respectively on HumanEval Python, HumanEval Multilingual, MBPP and DS-1000.
Surprisingly, our DeepSeek-Coder-Base-7B reaches the performance of CodeLlama-34B.
And the DeepSeek-Coder-Instruct-33B model after instruction tuning outperforms GPT35-turbo on HumanEval and achieves comparable result with GPT35-turbo on MBPP.
More evaluation details can be found in the [Detailed Evaluation](#5-detailed-evaluation-results).
### 3. Procedure of Data Creation and Model Training
#### Data Creation
- Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data.
- Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies.
- Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication.
- Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability.
<img src="pictures/data_clean.png" alt="data_creation" width="100%">
#### Model Training
- Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. Models are pre-trained using 1.8T tokens and a 4K window size in this step.
- Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models (**DeepSeek-Coder-Base**).
- Step 3: Instruction Fine-tuning on 2B tokens of instruction data, resulting in instruction-tuned models (**DeepSeek-Coder-Instruct**).
<img src="pictures/model_pretraining.png" alt="model_pretraining" width="100%">
### 4. How to Use
2023-11-03 13:01:52 +00:00
Before proceeding, you'll need to install the necessary dependencies. You can do this by running the following command:
```
pip install -r requirements.txt
```
2023-11-03 15:09:23 +00:00
A demo is also available on the [🤗 Hugging Face Space](https://huggingface.co/spaces/deepseek-ai/deepseek-coder-7b-instruct), and you can run the demo locally using `app.py` in [demo](https://github.com/deepseek-ai/deepseek-coder/tree/main/demo) folder. (Thanks to all the HF team for their support)
2023-11-03 14:41:45 +00:00
2023-11-03 13:01:52 +00:00
Here are some examples of how to use our model.
2023-11-03 14:31:24 +00:00
2023-11-02 14:07:09 +00:00
#### 1Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
2023-11-03 01:00:30 +00:00
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
2023-11-02 14:07:09 +00:00
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
This code will output the following result:
```
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
for i in range(1, len(arr)):
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)
```
#### 2Code Insertion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
input_text = """<fim▁begin>def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
<fim▁hole>
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)<fim▁end>"""
2023-11-03 01:00:30 +00:00
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
2023-11-02 14:07:09 +00:00
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
```
This code will output the following result:
```
for i in range(1, len(arr)):
```
#### 3Chat Model Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
# 32021 is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32021)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```
This code will output the following result:
```
Sure, here is a simple implementation of the Quick Sort algorithm in Python:
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less_than_pivot = [x for x in arr[1:] if x <= pivot]
greater_than_pivot = [x for x in arr[1:] if x > pivot]
return quick_sort(less_than_pivot) + [pivot] + quick_sort(greater_than_pivot)
# Test the function
arr = [10, 7, 8, 9, 1, 5]
print("Original array:", arr)
print("Sorted array:", quick_sort(arr))
This code works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The pivot element is then in its final position. The process is then repeated for the sub-arrays.
```
#### 4Repository Level Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
input_text = """#utils.py
import torch
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
def load_data():
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Standardize the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Convert numpy data to PyTorch tensors
X_train = torch.tensor(X_train, dtype=torch.float32)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.int64)
y_test = torch.tensor(y_test, dtype=torch.int64)
return X_train, X_test, y_train, y_test
def evaluate_predictions(y_test, y_pred):
return accuracy_score(y_test, y_pred)
#model.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
class IrisClassifier(nn.Module):
def __init__(self):
super(IrisClassifier, self).__init__()
self.fc = nn.Sequential(
nn.Linear(4, 16),
nn.ReLU(),
nn.Linear(16, 3)
)
def forward(self, x):
return self.fc(x)
def train_model(self, X_train, y_train, epochs, lr, batch_size):
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(self.parameters(), lr=lr)
# Create DataLoader for batches
dataset = TensorDataset(X_train, y_train)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
for epoch in range(epochs):
for batch_X, batch_y in dataloader:
optimizer.zero_grad()
outputs = self(batch_X)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
def predict(self, X_test):
with torch.no_grad():
outputs = self(X_test)
_, predicted = outputs.max(1)
return predicted.numpy()
#main.py
from utils import load_data, evaluate_predictions
from model import IrisClassifier as Classifier
def main():
# Model training and evaluation
"""
2023-11-03 01:00:30 +00:00
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
2023-11-02 14:07:09 +00:00
outputs = model.generate(**inputs, max_new_tokens=140)
print(tokenizer.decode(outputs[0]))
```
---
In the following scenario, the Deepseek-Coder 6.7B model effectively calls a class **IrisClassifier** and its member function from the `model.py` file, and also utilizes functions from the `utils.py` file, to correctly complete the **main** function in`main.py` file for model training and evaluation.
![Completion GIF](pictures/completion_demo.gif)
### 5. Detailed Evaluation Results
The reproducible code for the following evaluation results can be found in the [Evaluation](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation) directory.
#### 1Multilingual HumanEval Benchmark
![HumanEval](pictures/HumanEval.png)
#### 2MBPP Benchmark
<img src="pictures/MBPP.png" alt="MBPP" width="40%">
#### 3DS-1000 Benchmark
![DS-1000](pictures/DS-1000.png)
#### 4Program-Aid Math Reasoning Benchmark
![Math](pictures/Math.png)
2023-11-03 05:18:17 +00:00
### 6. License
2023-11-02 14:07:09 +00:00
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
See the [LICENSE-CODE](LICENSE-CODE) and [LICENSE-MODEL](LICENSE-MODEL) for more details.
### 6. Contact
If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).