Go to file
Evan Lezar 5bbaf8af4b Bump version to 1.7.0
Signed-off-by: Evan Lezar <elezar@nvidia.com>
2021-11-30 14:27:17 +01:00
build/container Bump golang version to 1.16.4 2021-11-30 13:35:48 +01:00
cmd
config Add jetpack-specific config.toml 2021-11-17 16:53:08 +01:00
docker Add jetpack-specific config.toml 2021-11-17 16:53:08 +01:00
internal/oci
packaging Bump version to 1.7.0 2021-11-30 14:27:17 +01:00
scripts Add versions.mk file to define versions 2021-11-30 13:35:46 +01:00
test Don't rebuild packages for every local run 2021-11-25 14:00:21 +01:00
third_party Update submodules 2021-11-30 13:35:48 +01:00
tools/container Specify containerd runtime type as string 2021-11-24 15:42:37 +01:00
vendor Update vendoring 2021-11-24 15:42:37 +01:00
.common-ci.yml
.dockerignore
.gitignore
.gitlab-ci.yml
.gitmodules
.nvidia-ci.yml
CONTRIBUTING.md
DEVELOPMENT.md
go.mod Update vendoring 2021-11-24 15:42:37 +01:00
go.sum Update vendoring 2021-11-24 15:42:37 +01:00
Jenkinsfile
LICENSE
Makefile Add versions.mk file to define versions 2021-11-30 13:35:46 +01:00
oci-nvidia-hook
oci-nvidia-hook.json
README.md
versions.mk Bump version to 1.7.0 2021-11-30 14:27:17 +01:00

NVIDIA Container Toolkit

GitHub license Documentation Package repository

nvidia-container-stack

Introduction

The NVIDIA Container Toolkit allows users to build and run GPU accelerated containers. The toolkit includes a container runtime library and utilities to automatically configure containers to leverage NVIDIA GPUs.

Product documentation including an architecture overview, platform support, and installation and usage guides can be found in the documentation repository.

Getting Started

Make sure you have installed the NVIDIA driver for your Linux Distribution Note that you do not need to install the CUDA Toolkit on the host system, but the NVIDIA driver needs to be installed

For instructions on getting started with the NVIDIA Container Toolkit, refer to the installation guide.

Usage

The user guide provides information on the configuration and command line options available when running GPU containers with Docker.

Issues and Contributing

Checkout the Contributing document!