mirror of
				https://github.com/open-webui/pipelines
				synced 2025-06-26 18:15:58 +00:00 
			
		
		
		
	Create llamaindex_ollama_pipeline.py
This commit is contained in:
		
							parent
							
								
									8c1dc465bc
								
							
						
					
					
						commit
						35f3501fbe
					
				
							
								
								
									
										36
									
								
								examples/llamaindex_ollama_pipeline.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										36
									
								
								examples/llamaindex_ollama_pipeline.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,36 @@
 | 
				
			|||||||
 | 
					from typing import List, Union, Generator
 | 
				
			||||||
 | 
					from schemas import OpenAIChatMessage
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from llama_index.embeddings.ollama import OllamaEmbedding
 | 
				
			||||||
 | 
					from llama_index.llms.openai import OpenAI
 | 
				
			||||||
 | 
					from llama_index.core import Settings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					ollama_embedding = OllamaEmbedding(
 | 
				
			||||||
 | 
					    model_name="nomic-embed-text",
 | 
				
			||||||
 | 
					    base_url="http://localhost:11434",
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					Settings.embed_model = ollama_embedding
 | 
				
			||||||
 | 
					Settings.llm = OpenAI(
 | 
				
			||||||
 | 
					    temperature=0, model="llama3", api_key="none", api_base="http://localhost:11434"
 | 
				
			||||||
 | 
					)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					documents = SimpleDirectoryReader("./data").load_data()
 | 
				
			||||||
 | 
					index = VectorStoreIndex.from_documents(documents)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_response(
 | 
				
			||||||
 | 
					    user_message: str, messages: List[OpenAIChatMessage]
 | 
				
			||||||
 | 
					) -> Union[str, Generator]:
 | 
				
			||||||
 | 
					    # This is where you can add your custom RAG pipeline.
 | 
				
			||||||
 | 
					    # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print(messages)
 | 
				
			||||||
 | 
					    print(user_message)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    query_engine = index.as_query_engine(streaming=True)
 | 
				
			||||||
 | 
					    response = query_engine.query(user_message)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return response.response_gen
 | 
				
			||||||
		Loading…
	
		Reference in New Issue
	
	Block a user