diff --git a/examples/llamaindex_ollama_pipeline.py b/examples/llamaindex_ollama_pipeline.py
new file mode 100644
index 0000000..768ef0e
--- /dev/null
+++ b/examples/llamaindex_ollama_pipeline.py
@@ -0,0 +1,36 @@
+from typing import List, Union, Generator
+from schemas import OpenAIChatMessage
+
+from llama_index.embeddings.ollama import OllamaEmbedding
+from llama_index.llms.openai import OpenAI
+from llama_index.core import Settings
+
+ollama_embedding = OllamaEmbedding(
+    model_name="nomic-embed-text",
+    base_url="http://localhost:11434",
+)
+
+Settings.embed_model = ollama_embedding
+Settings.llm = OpenAI(
+    temperature=0, model="llama3", api_key="none", api_base="http://localhost:11434"
+)
+
+from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
+
+documents = SimpleDirectoryReader("./data").load_data()
+index = VectorStoreIndex.from_documents(documents)
+
+
+def get_response(
+    user_message: str, messages: List[OpenAIChatMessage]
+) -> Union[str, Generator]:
+    # This is where you can add your custom RAG pipeline.
+    # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
+
+    print(messages)
+    print(user_message)
+
+    query_engine = index.as_query_engine(streaming=True)
+    response = query_engine.query(user_message)
+
+    return response.response_gen