pipelines/examples/llamaindex_ollama_pipeline.py
2024-05-21 16:02:01 -07:00

37 lines
1.1 KiB
Python

from typing import List, Union, Generator
from schemas import OpenAIChatMessage
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core import Settings
ollama_embedding = OllamaEmbedding(
model_name="nomic-embed-text",
base_url="http://localhost:11434",
)
Settings.embed_model = ollama_embedding
Settings.llm = OpenAI(
temperature=0, model="llama3", api_key="none", api_base="http://localhost:11434"
)
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
def get_response(
user_message: str, messages: List[OpenAIChatMessage]
) -> Union[str, Generator]:
# This is where you can add your custom RAG pipeline.
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
print(messages)
print(user_message)
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query(user_message)
return response.response_gen