mirror of
https://github.com/open-webui/pipelines
synced 2025-05-12 08:30:43 +00:00
Create llamaindex_ollama_pipeline.py
This commit is contained in:
parent
8c1dc465bc
commit
35f3501fbe
36
examples/llamaindex_ollama_pipeline.py
Normal file
36
examples/llamaindex_ollama_pipeline.py
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
from typing import List, Union, Generator
|
||||||
|
from schemas import OpenAIChatMessage
|
||||||
|
|
||||||
|
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||||
|
from llama_index.llms.openai import OpenAI
|
||||||
|
from llama_index.core import Settings
|
||||||
|
|
||||||
|
ollama_embedding = OllamaEmbedding(
|
||||||
|
model_name="nomic-embed-text",
|
||||||
|
base_url="http://localhost:11434",
|
||||||
|
)
|
||||||
|
|
||||||
|
Settings.embed_model = ollama_embedding
|
||||||
|
Settings.llm = OpenAI(
|
||||||
|
temperature=0, model="llama3", api_key="none", api_base="http://localhost:11434"
|
||||||
|
)
|
||||||
|
|
||||||
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
||||||
|
|
||||||
|
documents = SimpleDirectoryReader("./data").load_data()
|
||||||
|
index = VectorStoreIndex.from_documents(documents)
|
||||||
|
|
||||||
|
|
||||||
|
def get_response(
|
||||||
|
user_message: str, messages: List[OpenAIChatMessage]
|
||||||
|
) -> Union[str, Generator]:
|
||||||
|
# This is where you can add your custom RAG pipeline.
|
||||||
|
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
|
||||||
|
|
||||||
|
print(messages)
|
||||||
|
print(user_message)
|
||||||
|
|
||||||
|
query_engine = index.as_query_engine(streaming=True)
|
||||||
|
response = query_engine.query(user_message)
|
||||||
|
|
||||||
|
return response.response_gen
|
Loading…
Reference in New Issue
Block a user