DeepSeek-Coder/README.md

275 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p align="center">
<img width="1000px" alt="DeepSeek Coder" src="pictures/logo.png">
</p>
<p align="center"><a href="https://www.deepseek.com/">[<img src="pictures/home.png" width="20px"> Homepage]</a> | <a href="https://coder.deepseek.com/">[🤖 Chat with DeepSeek Coder] | <a href="https://huggingface.co/deepseek-ai">[🤗 Models Download]</a> | <a href="https://discord.gg/Tc7c45Zzu5">[Discord]</a> | <a href="https://github.com/guoday/assert/blob/main/QR.png?raw=true">[Wechat(微信)]</a></p>
<hr>
### 1. Introduction of DeepSeek Coder
Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.
<p align="center">
<img src="pictures/result.png" alt="result" width="70%">
</p>
- **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages.
- **Highly Flexible & Scalable**: Offered in model sizes of 1B, 5.7B, 6.7B and 33B, enabling users to choose the setup most suitable for their requirements.
- **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks.
- **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks.
### 2. Evaluation Results
We evaluate DeepSeek Coder on various coding-related benchmarks.
Only `pass@1` results on HumanEval (Python and Multilingual), MBPP, DS-1000 are reported here:
<p align="center">
<img src="pictures/table.png" alt="table" width="70%">
</p>
The result shows that DeepSeek-Coder-Base-33B significantly outperforms existing open-source code LLMs. Compared with CodeLlama-34B, it leads by 7.9%, 9.3%, 10.8% and 5.9% respectively on HumanEval Python, HumanEval Multilingual, MBPP and DS-1000.
Surprisingly, our DeepSeek-Coder-Base-7B reaches the performance of CodeLlama-34B.
And the DeepSeek-Coder-Instruct-33B model after instruction tuning outperforms GPT35-turbo on HumanEval and achieves comparable result with GPT35-turbo on MBPP.
More evaluation details can be found in the [Detailed Evaluation](#5-detailed-evaluation-results).
### 3. Procedure of Data Creation and Model Training
#### Data Creation
- Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data.
- Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies.
- Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication.
- Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability.
<img src="pictures/data_clean.png" alt="data_creation" width="100%">
#### Model Training
- Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. Models are pre-trained using 1.8T tokens and a 4K window size in this step.
- Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models (**DeepSeek-Coder-Base**).
- Step 3: Instruction Fine-tuning on 2B tokens of instruction data, resulting in instruction-tuned models (**DeepSeek-Coder-Instruct**).
<img src="pictures/model_pretraining.png" alt="model_pretraining" width="100%">
### 4. How to Use
Before proceeding, you'll need to install the necessary dependencies. You can do this by running the following command:
```
pip install -r requirements.txt
```
A demo is also available on the [🤗 Hugging Face Space](https://huggingface.co/spaces/deepseek-ai/deepseek-coder-7b-instruct), and you can run the demo locally using `app.py` in [demo](https://github.com/deepseek-ai/deepseek-coder/tree/main/demo) folder. (Thanks to all the HF team for their support)
Here are some examples of how to use our model.
#### 1Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
This code will output the following result:
```
def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
for i in range(1, len(arr)):
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)
```
#### 2Code Insertion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
input_text = """<fim▁begin>def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
<fim▁hole>
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)<fim▁end>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
```
This code will output the following result:
```
for i in range(1, len(arr)):
```
#### 3Chat Model Inference
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
# 32021 is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32021)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
```
This code will output the following result:
```
Sure, here is a simple implementation of the Quick Sort algorithm in Python:
def quick_sort(arr):
if len(arr) <= 1:
return arr
else:
pivot = arr[0]
less_than_pivot = [x for x in arr[1:] if x <= pivot]
greater_than_pivot = [x for x in arr[1:] if x > pivot]
return quick_sort(less_than_pivot) + [pivot] + quick_sort(greater_than_pivot)
# Test the function
arr = [10, 7, 8, 9, 1, 5]
print("Original array:", arr)
print("Sorted array:", quick_sort(arr))
This code works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The pivot element is then in its final position. The process is then repeated for the sub-arrays.
```
#### 4Repository Level Code Completion
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda()
input_text = """#utils.py
import torch
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
def load_data():
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Standardize the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Convert numpy data to PyTorch tensors
X_train = torch.tensor(X_train, dtype=torch.float32)
X_test = torch.tensor(X_test, dtype=torch.float32)
y_train = torch.tensor(y_train, dtype=torch.int64)
y_test = torch.tensor(y_test, dtype=torch.int64)
return X_train, X_test, y_train, y_test
def evaluate_predictions(y_test, y_pred):
return accuracy_score(y_test, y_pred)
#model.py
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
class IrisClassifier(nn.Module):
def __init__(self):
super(IrisClassifier, self).__init__()
self.fc = nn.Sequential(
nn.Linear(4, 16),
nn.ReLU(),
nn.Linear(16, 3)
)
def forward(self, x):
return self.fc(x)
def train_model(self, X_train, y_train, epochs, lr, batch_size):
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(self.parameters(), lr=lr)
# Create DataLoader for batches
dataset = TensorDataset(X_train, y_train)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
for epoch in range(epochs):
for batch_X, batch_y in dataloader:
optimizer.zero_grad()
outputs = self(batch_X)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
def predict(self, X_test):
with torch.no_grad():
outputs = self(X_test)
_, predicted = outputs.max(1)
return predicted.numpy()
#main.py
from utils import load_data, evaluate_predictions
from model import IrisClassifier as Classifier
def main():
# Model training and evaluation
"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=140)
print(tokenizer.decode(outputs[0]))
```
---
In the following scenario, the Deepseek-Coder 6.7B model effectively calls a class **IrisClassifier** and its member function from the `model.py` file, and also utilizes functions from the `utils.py` file, to correctly complete the **main** function in`main.py` file for model training and evaluation.
![Completion GIF](pictures/completion_demo.gif)
### 5. Detailed Evaluation Results
The reproducible code for the following evaluation results can be found in the [Evaluation](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation) directory.
#### 1Multilingual HumanEval Benchmark
![HumanEval](pictures/HumanEval.png)
#### 2MBPP Benchmark
<img src="pictures/MBPP.png" alt="MBPP" width="40%">
#### 3DS-1000 Benchmark
![DS-1000](pictures/DS-1000.png)
#### 4Program-Aid Math Reasoning Benchmark
![Math](pictures/Math.png)
### 6. License
This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use.
See the [LICENSE-CODE](LICENSE-CODE) and [LICENSE-MODEL](LICENSE-MODEL) for more details.
### 6. Contact
If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).