DeepSeek Coder

[ Homepage] | [🤖 Chat with DeepSeek Coder] | [🤗 Models Download] | [Discord] | [Wechat(微信)]


### 1. Introduction of DeepSeek Coder Deepseek Coder comprises a series of code language models trained on both 87% code and 13% natural language in English and Chinese, with each model pre-trained on 2T tokens. We provide various sizes of the code model, ranging from 1B to 33B versions. Each model is pre-trained on project-level code corpus by employing a window size of 16K and a extra fill-in-the-blank task, to support project-level code completion and infilling. For coding capabilities, Deepseek Coder achieves state-of-the-art performance among open-source code models on multiple programming languages and various benchmarks.

result

- **Massive Training Data**: Trained on 2T tokens, including 87% code and 13% linguistic data in both English and Chinese languages. - **Highly Flexible & Scalable**: Offered in model sizes of 1B, 5.7B, 6.7B and 33B, enabling users to choose the setup most suitable for their requirements. - **Superior Model Performance**: State-of-the-art performance among publicly available code models on HumanEval, MultiPL-E, MBPP, DS-1000, and APPS benchmarks. - **Advanced Code Completion Capabilities**: A window size of 16K and a fill-in-the-blank task, supporting project-level code completion and infilling tasks. ### 2. Evaluation Results We evaluate DeepSeek Coder on various coding-related benchmarks. Only `pass@1` results on HumanEval (Python and Multilingual), MBPP, DS-1000 are reported here:

table

The result shows that DeepSeek-Coder-Base-33B significantly outperforms existing open-source code LLMs. Compared with CodeLlama-34B, it leads by 7.9%, 9.3%, 10.8% and 5.9% respectively on HumanEval Python, HumanEval Multilingual, MBPP and DS-1000. Surprisingly, our DeepSeek-Coder-Base-7B reaches the performance of CodeLlama-34B. And the DeepSeek-Coder-Instruct-33B model after instruction tuning outperforms GPT35-turbo on HumanEval and achieves comparable result with GPT35-turbo on MBPP. More evaluation details can be found in the [Detailed Evaluation](#5-detailed-evaluation-results). ### 3. Procedure of Data Creation and Model Training #### Data Creation - Step 1: Collecting code data from GitHub and apply the same filtering rules as [StarcoderData](https://github.com/bigcode-project/bigcode-dataset) to filter data. - Step 2: Parsing the dependencies of files within the same repository to rearrange the file positions based on their dependencies. - Step 3: Concatenating dependent files to form a single example and employ repo-level minhash for deduplication. - Step 4: Further filtering out low-quality code, such as codes with syntax errors or poor readability. data_creation #### Model Training - Step 1: Initially pre-trained with a dataset consisting of 87% code, 10% code-related language (Github Markdown and StackExchange), and 3% non-code related Chinese language. Models are pre-trained using 1.8T tokens and a 4K window size in this step. - Step 2: Further Pre-training using an extended 16K window size on an additional 200B tokens, resulting in foundational models (**DeepSeek-Coder-Base**). - Step 3: Instruction Fine-tuning on 2B tokens of instruction data, resulting in instruction-tuned models (**DeepSeek-Coder-Instruct**). model_pretraining ### 4. How to Use Before proceeding, you'll need to install the necessary dependencies. You can do this by running the following command: ``` pip install -r requirements.txt ``` A demo is also available on the [🤗 Hugging Face Space](https://huggingface.co/spaces/deepseek-ai/deepseek-coder-7b-instruct), and you can run the demo locally using `app.py` in [demo](https://github.com/deepseek-ai/deepseek-coder/tree/main/demo) folder. (Thanks to all the HF team for their support) Here are some examples of how to use our model. #### 1)Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda() input_text = "#write a quick sort algorithm" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` This code will output the following result: ``` def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] for i in range(1, len(arr)): if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right) ``` #### 2)Code Insertion ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda() input_text = """<|fim▁begin|>def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[0] left = [] right = [] <|fim▁hole|> if arr[i] < pivot: left.append(arr[i]) else: right.append(arr[i]) return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>""" inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=128) print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):]) ``` This code will output the following result: ``` for i in range(1, len(arr)): ``` #### 3)Chat Model Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-instruct", trust_remote_code=True).cuda() messages=[ { 'role': 'user', 'content': "write a quick sort algorithm in python."} ] inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device) # 32021 is the id of <|EOT|> token outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=32021) print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)) ``` This code will output the following result: ``` Sure, here is a simple implementation of the Quick Sort algorithm in Python: def quick_sort(arr): if len(arr) <= 1: return arr else: pivot = arr[0] less_than_pivot = [x for x in arr[1:] if x <= pivot] greater_than_pivot = [x for x in arr[1:] if x > pivot] return quick_sort(less_than_pivot) + [pivot] + quick_sort(greater_than_pivot) # Test the function arr = [10, 7, 8, 9, 1, 5] print("Original array:", arr) print("Sorted array:", quick_sort(arr)) This code works by selecting a 'pivot' element from the array and partitioning the other elements into two sub-arrays, according to whether they are less than or greater than the pivot. The pivot element is then in its final position. The process is then repeated for the sub-arrays. ``` #### 4)Repository Level Code Completion ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-coder-6.7b-base", trust_remote_code=True).cuda() input_text = """#utils.py import torch from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score def load_data(): iris = datasets.load_iris() X = iris.data y = iris.target # Standardize the data scaler = StandardScaler() X = scaler.fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # Convert numpy data to PyTorch tensors X_train = torch.tensor(X_train, dtype=torch.float32) X_test = torch.tensor(X_test, dtype=torch.float32) y_train = torch.tensor(y_train, dtype=torch.int64) y_test = torch.tensor(y_test, dtype=torch.int64) return X_train, X_test, y_train, y_test def evaluate_predictions(y_test, y_pred): return accuracy_score(y_test, y_pred) #model.py import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader, TensorDataset class IrisClassifier(nn.Module): def __init__(self): super(IrisClassifier, self).__init__() self.fc = nn.Sequential( nn.Linear(4, 16), nn.ReLU(), nn.Linear(16, 3) ) def forward(self, x): return self.fc(x) def train_model(self, X_train, y_train, epochs, lr, batch_size): criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(self.parameters(), lr=lr) # Create DataLoader for batches dataset = TensorDataset(X_train, y_train) dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) for epoch in range(epochs): for batch_X, batch_y in dataloader: optimizer.zero_grad() outputs = self(batch_X) loss = criterion(outputs, batch_y) loss.backward() optimizer.step() def predict(self, X_test): with torch.no_grad(): outputs = self(X_test) _, predicted = outputs.max(1) return predicted.numpy() #main.py from utils import load_data, evaluate_predictions from model import IrisClassifier as Classifier def main(): # Model training and evaluation """ inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=140) print(tokenizer.decode(outputs[0])) ``` --- In the following scenario, the Deepseek-Coder 6.7B model effectively calls a class **IrisClassifier** and its member function from the `model.py` file, and also utilizes functions from the `utils.py` file, to correctly complete the **main** function in`main.py` file for model training and evaluation. ![Completion GIF](pictures/completion_demo.gif) ### 5. Detailed Evaluation Results The reproducible code for the following evaluation results can be found in the [Evaluation](https://github.com/deepseek-ai/deepseek-coder/tree/main/Evaluation) directory. #### 1)Multilingual HumanEval Benchmark ![HumanEval](pictures/HumanEval.png) #### 2)MBPP Benchmark MBPP #### 3)DS-1000 Benchmark ![DS-1000](pictures/DS-1000.png) #### 4)Program-Aid Math Reasoning Benchmark ![Math](pictures/Math.png) ### 6. License This code repository is licensed under the MIT License. The use of DeepSeek Coder models is subject to the Model License. DeepSeek Coder supports commercial use. See the [LICENSE-CODE](LICENSE-CODE) and [LICENSE-MODEL](LICENSE-MODEL) for more details. ### 6. Contact If you have any questions, please raise an issue or contact us at [agi_code@deepseek.com](mailto:agi_code@deepseek.com).