clearml/examples/frameworks/pytorch/notebooks/image/hyperparameter_search.ipynb

139 lines
4.9 KiB
Plaintext
Raw Normal View History

2020-06-15 19:48:51 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# execute this in command line on all machines to be used as workers before initiating the hyperparamer search \n",
2020-12-30 14:53:19 +00:00
"# ! pip install -U clearml-agent==0.15.0\n",
"# ! clearml-agent daemon --queue default\n",
2020-06-15 19:48:51 +00:00
"\n",
"# pip install with locked versions\n",
"! pip install -U pandas==1.0.3\n",
2020-12-30 14:53:19 +00:00
"! pip install -U clearml>=0.16.2\n",
"! pip install -U optuna==2.0.0"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
2020-12-30 14:53:19 +00:00
"from clearml.automation import UniformParameterRange, UniformIntegerParameterRange\n",
"from clearml.automation import HyperParameterOptimizer\n",
"from clearml.automation.optuna import OptimizerOptuna\n",
2020-06-15 19:48:51 +00:00
"\n",
2020-12-30 14:53:19 +00:00
"from clearml import Task"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"task = Task.init(project_name='Hyperparameter Optimization with Optuna',\n",
" task_name='Hyperparameter Search',\n",
" task_type=Task.TaskTypes.optimizer)\n"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#####################################################################\n",
"### Don't forget to replace this default id with your own task id ###\n",
"#####################################################################\n",
"TEMPLATE_TASK_ID = 'b634a59993f8477f9e22167bae662be4'"
2020-06-15 19:48:51 +00:00
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = HyperParameterOptimizer(\n",
" base_task_id=TEMPLATE_TASK_ID, # This is the experiment we want to optimize\n",
" # here we define the hyper-parameters to optimize\n",
" hyper_parameters=[\n",
" UniformIntegerParameterRange('number_of_epochs', min_value=2, max_value=12, step_size=2),\n",
" UniformIntegerParameterRange('batch_size', min_value=2, max_value=16, step_size=2),\n",
2020-06-15 19:48:51 +00:00
" UniformParameterRange('dropout', min_value=0, max_value=0.5, step_size=0.05),\n",
" UniformParameterRange('base_lr', min_value=0.00025, max_value=0.01, step_size=0.00025),\n",
2020-06-15 19:48:51 +00:00
" ],\n",
" # setting the objective metric we want to maximize/minimize\n",
2020-06-15 19:48:51 +00:00
" objective_metric_title='accuracy',\n",
" objective_metric_series='total',\n",
" objective_metric_sign='max', # maximize or minimize the objective metric\n",
"\n",
2020-12-30 14:53:19 +00:00
" # setting optimizer - clearml supports GridSearch, RandomSearch, OptimizerBOHB and OptimizerOptuna\n",
" optimizer_class=OptimizerOptuna,\n",
" \n",
" # Configuring optimization parameters\n",
" execution_queue='dan_queue', # queue to schedule the experiments for execution\n",
" max_number_of_concurrent_tasks=2, # number of concurrent experiments\n",
" optimization_time_limit=60., # set the time limit for the optimization process\n",
" compute_time_limit=120, # set the compute time limit (sum of execution time on all machines)\n",
" total_max_jobs=20, # set the maximum number of experiments for the optimization. \n",
" # Converted to total number of iteration for OptimizerBOHB\n",
2020-06-15 19:48:51 +00:00
" min_iteration_per_job=15000, # minimum number of iterations per experiment, till early stopping\n",
" max_iteration_per_job=150000, # maximum number of iterations per experiment\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer.set_report_period(1) # setting the time gap between two consecutive reports\n",
2020-06-15 19:48:51 +00:00
"optimizer.start() \n",
"optimizer.wait() # wait until process is done\n",
"optimizer.stop() # make sure background optimization stopped"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# optimization is completed, print the top performing experiments id\n",
"k = 3\n",
"top_exp = optimizer.get_top_experiments(top_k=k)\n",
"print('Top {} experiments are:'.format(k))\n",
"for n, t in enumerate(top_exp, 1):\n",
" print('Rank {}: task id={} |result={}'\n",
" .format(n, t.id, t.get_last_scalar_metrics()['accuracy']['total']['last']))"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 4
}