mirror of
https://github.com/clearml/clearml
synced 2025-04-02 20:11:00 +00:00
Fix Optimizer limits and values, update trains version in examples
This commit is contained in:
parent
ab5059e8e1
commit
8ec6bba4d9
@ -12,7 +12,7 @@
|
||||
"! pip install -U torch==1.5.1\n",
|
||||
"! pip install -U torchaudio==0.5.1\n",
|
||||
"! pip install -U matplotlib==3.2.1\n",
|
||||
"! pip install -U trains>=0.16.0\n",
|
||||
"! pip install -U trains>=0.16.1\n",
|
||||
"! pip install -U tensorboard==2.2.1"
|
||||
]
|
||||
},
|
||||
|
@ -12,7 +12,7 @@
|
||||
"\n",
|
||||
"# pip install with locked versions\n",
|
||||
"! pip install -U pandas==1.0.3\n",
|
||||
"! pip install -U trains>=0.16.1\n",
|
||||
"! pip install -U trains>=0.16.2\n",
|
||||
"! pip install -U optuna==2.0.0"
|
||||
]
|
||||
},
|
||||
@ -35,7 +35,9 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"task = Task.init(project_name='Hyperparameter Optimization with Optuna', task_name='Hyperparameter Search')\n"
|
||||
"task = Task.init(project_name='Hyperparameter Optimization with Optuna',\n",
|
||||
" task_name='Hyperparameter Search',\n",
|
||||
" task_type=Task.TaskTypes.optimizer)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -134,4 +136,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
||||
}
|
@ -57,11 +57,7 @@ class TrainsJob(object):
|
||||
:param str series: Series on the specific graph (variant)
|
||||
:return: A tuple of min value, max value, last value
|
||||
"""
|
||||
title = hashlib.md5(str(title).encode('utf-8')).hexdigest()
|
||||
series = hashlib.md5(str(series).encode('utf-8')).hexdigest()
|
||||
metric = 'last_metrics.{}.{}.'.format(title, series)
|
||||
values = ['min_value', 'max_value', 'value']
|
||||
metrics = [metric + v for v in values]
|
||||
metrics, title, series, values = self.get_metric_req_params(title, series)
|
||||
|
||||
res = self.task.send(
|
||||
tasks_service.GetAllRequest(
|
||||
@ -75,6 +71,15 @@ class TrainsJob(object):
|
||||
|
||||
return tuple(response.response_data['tasks'][0]['last_metrics'][title][series][v] for v in values)
|
||||
|
||||
@staticmethod
|
||||
def get_metric_req_params(title, series):
|
||||
title = hashlib.md5(str(title).encode('utf-8')).hexdigest()
|
||||
series = hashlib.md5(str(series).encode('utf-8')).hexdigest()
|
||||
metric = 'last_metrics.{}.{}.'.format(title, series)
|
||||
values = ['min_value', 'max_value', 'value']
|
||||
metrics = [metric + v for v in values]
|
||||
return metrics, title, series, values
|
||||
|
||||
def launch(self, queue_name=None):
|
||||
# type: (str) -> ()
|
||||
"""
|
||||
|
@ -6,7 +6,7 @@ from itertools import product
|
||||
from logging import getLogger
|
||||
from threading import Thread, Event
|
||||
from time import time
|
||||
from typing import Dict, Set, Tuple, Union, Any, Sequence, Optional, Mapping, Callable
|
||||
from typing import List, Set, Union, Any, Sequence, Optional, Mapping, Callable
|
||||
|
||||
from .job import TrainsJob
|
||||
from .parameters import Parameter
|
||||
@ -395,8 +395,17 @@ class SearchStrategy(object):
|
||||
|
||||
:return: False, if the job is no longer relevant.
|
||||
"""
|
||||
abort_job = False
|
||||
|
||||
abort_job = self.update_budget_per_job(job)
|
||||
|
||||
if abort_job:
|
||||
job.abort()
|
||||
return False
|
||||
|
||||
return not job.is_stopped()
|
||||
|
||||
def update_budget_per_job(self, job):
|
||||
abort_job = False
|
||||
if self.time_limit_per_job:
|
||||
elapsed = job.elapsed() / 60.
|
||||
if elapsed > 0:
|
||||
@ -409,9 +418,6 @@ class SearchStrategy(object):
|
||||
elapsed = job.elapsed() / 60.
|
||||
if elapsed > 0:
|
||||
self.budget.compute_time.update(job.task_id(), elapsed)
|
||||
self.budget.compute_time.update(job.task_id(), job.elapsed() / 60.)
|
||||
if self.budget.compute_time.used and self.compute_time_limit < self.budget.compute_time.used:
|
||||
abort_job = True
|
||||
|
||||
if self.max_iteration_per_job:
|
||||
iterations = self._get_job_iterations(job)
|
||||
@ -420,11 +426,7 @@ class SearchStrategy(object):
|
||||
if iterations > self.max_iteration_per_job:
|
||||
abort_job = True
|
||||
|
||||
if abort_job:
|
||||
job.abort()
|
||||
return False
|
||||
|
||||
return not job.is_stopped()
|
||||
return abort_job
|
||||
|
||||
def get_running_jobs(self):
|
||||
# type: () -> Sequence[TrainsJob]
|
||||
@ -443,7 +445,17 @@ class SearchStrategy(object):
|
||||
|
||||
:return: dict of task IDs (str) as keys, and their parameters dict as values.
|
||||
"""
|
||||
return self._created_jobs_ids
|
||||
return {job_id: job_val[1] for job_id, job_val in self._created_jobs_ids.items()}
|
||||
|
||||
def get_created_jobs_tasks(self):
|
||||
# type: () -> Mapping[str, dict]
|
||||
"""
|
||||
Return a Task IDs dict created by this optimizer until now.
|
||||
The values of the returned dict are the TrainsJob.
|
||||
|
||||
:return: dict of task IDs (str) as keys, and their TrainsJob as values.
|
||||
"""
|
||||
return {job_id: job_val[0] for job_id, job_val in self._created_jobs_ids.items()}
|
||||
|
||||
def get_top_experiments(self, top_k):
|
||||
# type: (int) -> Sequence[Task]
|
||||
@ -502,7 +514,7 @@ class SearchStrategy(object):
|
||||
base_task_id=base_task_id, parameter_override=parameter_override,
|
||||
task_overrides=task_overrides, tags=tags, parent=parent or self._job_parent_id,
|
||||
name=name, comment=comment, project=self._get_task_project(parent or self._job_parent_id), **kwargs)
|
||||
self._created_jobs_ids[new_job.task_id()] = parameter_override
|
||||
self._created_jobs_ids[new_job.task_id()] = (new_job, parameter_override)
|
||||
logger.info('Creating new Task: {}'.format(parameter_override))
|
||||
return new_job
|
||||
|
||||
@ -900,7 +912,7 @@ class HyperParameterOptimizer(object):
|
||||
# create a new Task, if we do not have one already
|
||||
self._task = Task.current_task()
|
||||
if not self._task and always_create_task:
|
||||
base_task = Task.get_task(task_id=self.base_task_id)
|
||||
base_task = Task.get_task(task_id=base_task_id)
|
||||
self._task = Task.init(
|
||||
project_name=base_task.get_project_name(),
|
||||
task_name='Optimizing: {}'.format(base_task.name),
|
||||
@ -1014,15 +1026,18 @@ class HyperParameterOptimizer(object):
|
||||
self._thread_reporter.start()
|
||||
return True
|
||||
|
||||
def stop(self, timeout=None):
|
||||
# type: (Optional[float]) -> ()
|
||||
def stop(self, timeout=None, flush_reporter=True):
|
||||
# type: (Optional[float], Optional[bool]) -> ()
|
||||
"""
|
||||
Stop the HyperParameterOptimizer controller and the optimization thread.
|
||||
|
||||
:param float timeout: Wait timeout for the optimization thread to exit (minutes).
|
||||
The default is ``None``, indicating do not wait terminate immediately.
|
||||
:param flush_reporter: Wait for reporter to flush data.
|
||||
"""
|
||||
if not self._thread or not self._stop_event or not self.optimizer:
|
||||
if self._thread_reporter and flush_reporter:
|
||||
self._thread_reporter.join()
|
||||
return
|
||||
|
||||
_thread = self._thread
|
||||
@ -1039,8 +1054,9 @@ class HyperParameterOptimizer(object):
|
||||
|
||||
# clear thread
|
||||
self._thread = None
|
||||
# wait for reporter to flush
|
||||
self._thread_reporter.join()
|
||||
if flush_reporter:
|
||||
# wait for reporter to flush
|
||||
self._thread_reporter.join()
|
||||
|
||||
def is_active(self):
|
||||
# type: () -> bool
|
||||
@ -1255,7 +1271,8 @@ class HyperParameterOptimizer(object):
|
||||
title = '{}/{}'.format(title, series)
|
||||
counter = 0
|
||||
completed_jobs = dict()
|
||||
best_experiment = float('-inf'), None
|
||||
task_logger = None
|
||||
cur_completed_jobs = set()
|
||||
|
||||
while self._thread is not None:
|
||||
timeout = self.optimization_timeout - time() if self.optimization_timeout else 0.
|
||||
@ -1278,98 +1295,127 @@ class HyperParameterOptimizer(object):
|
||||
|
||||
# do some reporting
|
||||
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
budget = self.optimizer.budget.to_dict()
|
||||
except Exception:
|
||||
budget = {}
|
||||
self._report_remaining_budget(task_logger, counter)
|
||||
|
||||
# report remaining budget
|
||||
for budget_part, value in budget.items():
|
||||
task_logger.report_scalar(
|
||||
title='remaining budget', series='{} %'.format(budget_part),
|
||||
iteration=counter, value=round(100 - value['used'] * 100., ndigits=1))
|
||||
if self.optimization_timeout and self.optimization_start_time:
|
||||
task_logger.report_scalar(
|
||||
title='remaining budget', series='time %',
|
||||
iteration=counter,
|
||||
value=round(100 - (100. * (time() - self.optimization_start_time) /
|
||||
(self.optimization_timeout - self.optimization_start_time)), ndigits=1)
|
||||
)
|
||||
if self.optimizer.budget.compute_time.used and self.optimizer.budget.compute_time.used >= 1.0:
|
||||
# Reached compute time limit
|
||||
timeout = -1
|
||||
|
||||
self._report_resources(task_logger, counter)
|
||||
# collect a summary of all the jobs and their final objective values
|
||||
cur_completed_jobs = set(self.optimizer.get_created_jobs_ids().keys()) - \
|
||||
{j.task_id() for j in self.optimizer.get_running_jobs()}
|
||||
if cur_completed_jobs != set(completed_jobs.keys()):
|
||||
pairs = []
|
||||
labels = []
|
||||
created_jobs = copy(self.optimizer.get_created_jobs_ids())
|
||||
for i, (job_id, params) in enumerate(created_jobs.items()):
|
||||
if job_id in completed_jobs:
|
||||
pairs.append((i, completed_jobs[job_id][0]))
|
||||
labels.append(str(completed_jobs[job_id][2])[1:-1])
|
||||
else:
|
||||
value = self.objective_metric.get_objective(job_id)
|
||||
if value is not None:
|
||||
pairs.append((i, value))
|
||||
labels.append(str(params)[1:-1])
|
||||
iteration_value = self.objective_metric.get_current_raw_objective(job_id)
|
||||
completed_jobs[job_id] = (
|
||||
value, iteration_value[0] if iteration_value else -1, copy(params))
|
||||
# callback new experiment completed
|
||||
if self._experiment_completed_cb:
|
||||
normalized_value = self.objective_metric.get_normalized_objective(job_id)
|
||||
if normalized_value is not None and normalized_value > best_experiment[0]:
|
||||
best_experiment = normalized_value, job_id
|
||||
c = completed_jobs[job_id]
|
||||
self._experiment_completed_cb(job_id, c[0], c[1], c[2], best_experiment[1])
|
||||
|
||||
self._report_completed_tasks_best_results(completed_jobs, task_logger, title, counter)
|
||||
|
||||
if pairs:
|
||||
print('Updating job performance summary plot/table')
|
||||
|
||||
# update scatter plot
|
||||
task_logger.report_scatter2d(
|
||||
title='optimization', series=title,
|
||||
scatter=pairs, iteration=0, labels=labels,
|
||||
mode='markers', xaxis='job #', yaxis='objective')
|
||||
|
||||
# update summary table
|
||||
if pd:
|
||||
index = list(completed_jobs.keys())
|
||||
table = {'objective': [completed_jobs[i][0] for i in index],
|
||||
'iteration': [completed_jobs[i][1] for i in index]}
|
||||
columns = set([c for k, v in completed_jobs.items() for c in v[2].keys()])
|
||||
for c in sorted(columns):
|
||||
table.update({c: [completed_jobs[i][2].get(c, '') for i in index]})
|
||||
|
||||
df = pd.DataFrame(table, index=index)
|
||||
df.sort_values(by='objective', ascending=bool(self.objective_metric.sign < 0), inplace=True)
|
||||
df.index.name = 'task id'
|
||||
task_logger.report_table(
|
||||
"summary", "job", 0, table_plot=df,
|
||||
extra_layout={"title": "objective: {}".format(title)})
|
||||
self._report_completed_status(completed_jobs, cur_completed_jobs, task_logger, title)
|
||||
|
||||
self._report_completed_tasks_best_results(set(completed_jobs.keys()), task_logger, title, counter)
|
||||
# if we should leave, stop everything now.
|
||||
if timeout < 0:
|
||||
# we should leave
|
||||
self.stop()
|
||||
self.stop(flush_reporter=False)
|
||||
return
|
||||
if task_logger and counter:
|
||||
counter += 1
|
||||
self._report_remaining_budget(task_logger, counter)
|
||||
self._report_resources(task_logger, counter)
|
||||
self._report_completed_status(completed_jobs, cur_completed_jobs, task_logger, title, force=True)
|
||||
self._report_completed_tasks_best_results(set(completed_jobs.keys()), task_logger, title, counter)
|
||||
|
||||
def _report_completed_status(self, completed_jobs, cur_completed_jobs, task_logger, title, force=False):
|
||||
best_experiment = float('-inf'), None
|
||||
if force or cur_completed_jobs != set(completed_jobs.keys()):
|
||||
pairs = []
|
||||
labels = []
|
||||
created_jobs = copy(self.optimizer.get_created_jobs_ids())
|
||||
id_status = {j_id: j_run.status() for j_id, j_run in self.optimizer.get_created_jobs_tasks().items()}
|
||||
for i, (job_id, params) in enumerate(created_jobs.items()):
|
||||
value = self.objective_metric.get_objective(job_id)
|
||||
if job_id in completed_jobs:
|
||||
if value != completed_jobs[job_id][0]:
|
||||
iteration_value = self.objective_metric.get_current_raw_objective(job_id)
|
||||
completed_jobs[job_id] = (
|
||||
value,
|
||||
iteration_value[0] if iteration_value else -1,
|
||||
copy(dict(**params, **{"status": id_status.get(job_id)})))
|
||||
elif completed_jobs.get(job_id):
|
||||
completed_jobs[job_id] = (completed_jobs[job_id][0],
|
||||
completed_jobs[job_id][1],
|
||||
copy(dict(**params, **{"status": id_status.get(job_id)})))
|
||||
pairs.append((i, completed_jobs[job_id][0]))
|
||||
labels.append(str(completed_jobs[job_id][2])[1:-1])
|
||||
else:
|
||||
if value is not None:
|
||||
pairs.append((i, value))
|
||||
labels.append(str(params)[1:-1])
|
||||
iteration_value = self.objective_metric.get_current_raw_objective(job_id)
|
||||
completed_jobs[job_id] = (
|
||||
value,
|
||||
iteration_value[0] if iteration_value else -1,
|
||||
copy(dict(**params, **{"status": id_status.get(job_id)})))
|
||||
# callback new experiment completed
|
||||
if self._experiment_completed_cb:
|
||||
normalized_value = self.objective_metric.get_normalized_objective(job_id)
|
||||
if normalized_value is not None and normalized_value > best_experiment[0]:
|
||||
best_experiment = normalized_value, job_id
|
||||
c = completed_jobs[job_id]
|
||||
self._experiment_completed_cb(job_id, c[0], c[1], c[2], best_experiment[1])
|
||||
|
||||
if pairs:
|
||||
print('Updating job performance summary plot/table')
|
||||
|
||||
# update scatter plot
|
||||
task_logger.report_scatter2d(
|
||||
title='optimization', series=title,
|
||||
scatter=pairs, iteration=0, labels=labels,
|
||||
mode='markers', xaxis='job #', yaxis='objective')
|
||||
|
||||
# update summary table
|
||||
if pd:
|
||||
index = list(completed_jobs.keys())
|
||||
table = {'objective': [completed_jobs[i][0] for i in index],
|
||||
'iteration': [completed_jobs[i][1] for i in index]}
|
||||
columns = set([c for k, v in completed_jobs.items() for c in v[2].keys()])
|
||||
for c in sorted(columns):
|
||||
table.update({c: [completed_jobs[i][2].get(c, '') for i in index]})
|
||||
|
||||
df = pd.DataFrame(table, index=index)
|
||||
df.sort_values(by='objective', ascending=bool(self.objective_metric.sign < 0), inplace=True)
|
||||
df.index.name = 'task id'
|
||||
task_logger.report_table(
|
||||
"summary", "job", 0, table_plot=df,
|
||||
extra_layout={"title": "objective: {}".format(title)})
|
||||
|
||||
def _report_remaining_budget(self, task_logger, counter):
|
||||
# noinspection PyBroadException
|
||||
try:
|
||||
budget = self.optimizer.budget.to_dict()
|
||||
except Exception:
|
||||
budget = {}
|
||||
# report remaining budget
|
||||
for budget_part, value in budget.items():
|
||||
task_logger.report_scalar(
|
||||
title='remaining budget', series='{} %'.format(budget_part),
|
||||
iteration=counter, value=round(100 - value['used'] * 100., ndigits=1))
|
||||
if self.optimization_timeout and self.optimization_start_time:
|
||||
task_logger.report_scalar(
|
||||
title='remaining budget', series='time %',
|
||||
iteration=counter,
|
||||
value=round(100 - (100. * (time() - self.optimization_start_time) /
|
||||
(self.optimization_timeout - self.optimization_start_time)), ndigits=1)
|
||||
)
|
||||
|
||||
def _report_completed_tasks_best_results(self, completed_jobs, task_logger, title, counter):
|
||||
# type: (Dict[str, Tuple[float, int, Dict[str, int]]], Logger, str, int) -> ()
|
||||
# type: (Set[str], Logger, str, int) -> ()
|
||||
if completed_jobs:
|
||||
value_func, series_name = (max, "max") if self.objective_metric.get_objective_sign() > 0 else \
|
||||
(min, "min")
|
||||
task_logger.report_scalar(
|
||||
title=title,
|
||||
series=series_name,
|
||||
iteration=counter,
|
||||
value=value_func([val[0] for val in completed_jobs.values()]))
|
||||
latest_completed = self._get_latest_completed_task_value(set(completed_jobs.keys()))
|
||||
latest_completed, obj_values = self._get_latest_completed_task_value(completed_jobs, series_name)
|
||||
val = value_func(obj_values)
|
||||
if latest_completed:
|
||||
task_logger.report_scalar(
|
||||
title=title,
|
||||
series=series_name,
|
||||
iteration=counter,
|
||||
value=val)
|
||||
task_logger.report_scalar(
|
||||
title=title,
|
||||
series="last reported",
|
||||
@ -1396,7 +1442,10 @@ class HyperParameterOptimizer(object):
|
||||
if q.get("name") == self.execution_queue
|
||||
]
|
||||
)
|
||||
task_logger.report_scalar(title="resources", series="queue workers", iteration=iteration, value=queue_workers)
|
||||
task_logger.report_scalar(title="resources",
|
||||
series="queue workers",
|
||||
iteration=iteration,
|
||||
value=queue_workers)
|
||||
|
||||
def _report_tasks_status(self, task_logger, iteration):
|
||||
# type: (Logger, int) -> ()
|
||||
@ -1411,10 +1460,11 @@ class HyperParameterOptimizer(object):
|
||||
title="resources", series=series,
|
||||
iteration=iteration, value=val)
|
||||
|
||||
def _get_latest_completed_task_value(self, cur_completed_jobs):
|
||||
# type: (Set[str]) -> float
|
||||
def _get_latest_completed_task_value(self, cur_completed_jobs, series_name):
|
||||
# type: (Set[str], str) -> (float, List[float])
|
||||
completed_value = None
|
||||
latest_completed = None
|
||||
obj_values = []
|
||||
cur_task = self._task or Task.current_task()
|
||||
for j in cur_completed_jobs:
|
||||
res = cur_task.send(tasks_services.GetByIdRequest(task=j))
|
||||
@ -1424,7 +1474,15 @@ class HyperParameterOptimizer(object):
|
||||
completed_time = datetime.strptime(response.response_data["task"]["completed"].partition("+")[0],
|
||||
"%Y-%m-%dT%H:%M:%S.%f")
|
||||
completed_time = completed_time.timestamp()
|
||||
completed_values = self._get_last_value(response)
|
||||
obj_values.append(completed_values['max_value'] if series_name == "max" else completed_values['min_value'])
|
||||
if not latest_completed or completed_time > latest_completed:
|
||||
latest_completed = completed_time
|
||||
completed_value = self.objective_metric.get_objective(j)
|
||||
return completed_value
|
||||
completed_value = completed_values['value']
|
||||
return completed_value, obj_values
|
||||
|
||||
def _get_last_value(self, response):
|
||||
metrics, title, series, values = TrainsJob.get_metric_req_params(self.objective_metric.title,
|
||||
self.objective_metric.series)
|
||||
last_values = response.response_data["task"]['last_metrics'][title][series]
|
||||
return last_values
|
||||
|
@ -45,11 +45,12 @@ class OptunaObjective(object):
|
||||
current_job.launch(self.queue_name)
|
||||
iteration_value = None
|
||||
is_pending = True
|
||||
while self.optimizer.monitor_job(current_job):
|
||||
while not current_job.is_stopped():
|
||||
if is_pending and not current_job.is_pending():
|
||||
is_pending = False
|
||||
self.optimizer.budget.jobs.update(current_job.task_id(), 1.)
|
||||
if not is_pending:
|
||||
self.optimizer.update_budget_per_job(current_job)
|
||||
# noinspection PyProtectedMember
|
||||
iteration_value = self.optimizer._objective_metric.get_current_raw_objective(current_job)
|
||||
|
||||
@ -182,6 +183,7 @@ class OptimizerOptuna(SearchStrategy):
|
||||
self._study.stop()
|
||||
except Exception as ex:
|
||||
print(ex)
|
||||
self._stop_event.set()
|
||||
|
||||
def _convert_hyper_parameters_to_optuna(self):
|
||||
# type: () -> dict
|
||||
|
Loading…
Reference in New Issue
Block a user