mirror of
				https://github.com/clearml/clearml
				synced 2025-06-26 18:16:07 +00:00 
			
		
		
		
	Fix kernels issue in pytorch example. Update trains version.
This commit is contained in:
		
							parent
							
								
									5beecbb078
								
							
						
					
					
						commit
						c234837ce2
					
				| @ -12,8 +12,8 @@ | ||||
|     "\n", | ||||
|     "# pip install with locked versions\n", | ||||
|     "! pip install -U pandas==1.0.3\n", | ||||
|     "! pip install -U trains>=0.15.0\n", | ||||
|     "! pip install -U optuna==2.0.0rc0" | ||||
|     "! pip install -U trains>=0.16.1\n", | ||||
|     "! pip install -U optuna==2.0.0" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -35,7 +35,7 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "task = Task.init(project_name='Hyper-Parameter Search', task_name='Hyper-Parameter Optimization')\n" | ||||
|     "task = Task.init(project_name='Hyperparameter Optimization with Optuna', task_name='Hyperparameter Search')\n" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -47,7 +47,7 @@ | ||||
|     "#####################################################################\n", | ||||
|     "### Don't forget to replace this default id with your own task id ###\n", | ||||
|     "#####################################################################\n", | ||||
|     "TEMPLATE_TASK_ID = 'd551a9990cb5451c9c744cc58201c612'" | ||||
|     "TEMPLATE_TASK_ID = 'b634a59993f8477f9e22167bae662be4'" | ||||
|    ] | ||||
|   }, | ||||
|   { | ||||
| @ -60,25 +60,26 @@ | ||||
|     "    base_task_id=TEMPLATE_TASK_ID,  # This is the experiment we want to optimize\n", | ||||
|     "    # here we define the hyper-parameters to optimize\n", | ||||
|     "    hyper_parameters=[\n", | ||||
|     "        UniformIntegerParameterRange('number_of_epochs', min_value=5, max_value=15, step_size=1),\n", | ||||
|     "        UniformIntegerParameterRange('batch_size', min_value=2, max_value=12, step_size=2),\n", | ||||
|     "        UniformIntegerParameterRange('number_of_epochs', min_value=2, max_value=12, step_size=2),\n", | ||||
|     "        UniformIntegerParameterRange('batch_size', min_value=2, max_value=16, step_size=2),\n", | ||||
|     "        UniformParameterRange('dropout', min_value=0, max_value=0.5, step_size=0.05),\n", | ||||
|     "        UniformParameterRange('base_lr', min_value=0.0005, max_value=0.01, step_size=0.0005),\n", | ||||
|     "        UniformParameterRange('base_lr', min_value=0.00025, max_value=0.01, step_size=0.00025),\n", | ||||
|     "    ],\n", | ||||
|     "    # this is the objective metric we want to maximize/minimize\n", | ||||
|     "    # setting the objective metric we want to maximize/minimize\n", | ||||
|     "    objective_metric_title='accuracy',\n", | ||||
|     "    objective_metric_series='total',\n", | ||||
|     "    objective_metric_sign='max',  # maximize or minimize the objective metric\n", | ||||
|     "    max_number_of_concurrent_tasks=3,  # number of concurrent experiments\n", | ||||
|     "    # setting optimizer - trains supports GridSearch, RandomSearch or OptimizerBOHB\n", | ||||
|     "    optimizer_class=OptimizerOptuna,  # can be replaced with OptimizerBOHB\n", | ||||
|     "    execution_queue='default',  # queue to schedule the experiments for execution\n", | ||||
|     "    optimization_time_limit=30.,  # time limit for each experiment (optional, ignored by OptimizerBOHB)\n", | ||||
|     "    pool_period_min=1,  # Check the experiments every x minutes\n", | ||||
|     "    # set the maximum number of experiments for the optimization.\n", | ||||
|     "    # OptimizerBOHB sets the total number of iteration as total_max_jobs * max_iteration_per_job\n", | ||||
|     "    total_max_jobs=12,\n", | ||||
|     "    # setting OptimizerBOHB configuration (ignored by other optimizers)\n", | ||||
|     "\n", | ||||
|     "    # setting optimizer - trains supports GridSearch, RandomSearch, OptimizerBOHB and OptimizerOptuna\n", | ||||
|     "    optimizer_class=OptimizerOptuna,\n", | ||||
|     "    \n", | ||||
|     "    # Configuring optimization parameters\n", | ||||
|     "    execution_queue='dan_queue',  # queue to schedule the experiments for execution\n", | ||||
|     "    max_number_of_concurrent_tasks=2,  # number of concurrent experiments\n", | ||||
|     "    optimization_time_limit=60.,  # set the time limit for the optimization process\n", | ||||
|     "    compute_time_limit=120,  # set the compute time limit (sum of execution time on all machines)\n", | ||||
|     "    total_max_jobs=20,  # set the maximum number of experiments for the optimization. \n", | ||||
|     "                        # Converted to total number of iteration for OptimizerBOHB\n", | ||||
|     "    min_iteration_per_job=15000,  # minimum number of iterations per experiment, till early stopping\n", | ||||
|     "    max_iteration_per_job=150000,  # maximum number of iterations per experiment\n", | ||||
|     ")" | ||||
| @ -90,7 +91,7 @@ | ||||
|    "metadata": {}, | ||||
|    "outputs": [], | ||||
|    "source": [ | ||||
|     "optimizer.set_time_limit(in_minutes=90.0)  # set the time limit for the optimization process\n", | ||||
|     "optimizer.set_report_period(1)  # setting the time gap between two consecutive reports\n", | ||||
|     "optimizer.start()  \n", | ||||
|     "optimizer.wait()  # wait until process is done\n", | ||||
|     "optimizer.stop()  # make sure background optimization stopped" | ||||
|  | ||||
| @ -15,7 +15,7 @@ | ||||
|     "! pip install -U torch==1.5.1\n", | ||||
|     "! pip install -U torchvision==0.6.1\n", | ||||
|     "! pip install -U numpy==1.18.4\n", | ||||
|     "! pip install -U trains>=0.15.0\n", | ||||
|     "! pip install -U trains>=0.16.1\n", | ||||
|     "! pip install -U tensorboard==2.2.1" | ||||
|    ] | ||||
|   }, | ||||
| @ -83,11 +83,10 @@ | ||||
|     "class Net(nn.Module):\n", | ||||
|     "    def __init__(self):\n", | ||||
|     "        super(Net, self).__init__()\n", | ||||
|     "        self.conv1 = nn.Conv2d(3, 6, 5)\n", | ||||
|     "        self.conv2 = nn.Conv2d(3, 6, 5)\n", | ||||
|     "        self.conv1 = nn.Conv2d(3, 6, 3)\n", | ||||
|     "        self.conv2 = nn.Conv2d(6, 16, 3)\n", | ||||
|     "        self.pool = nn.MaxPool2d(2, 2)\n", | ||||
|     "        self.conv2 = nn.Conv2d(6, 16, 5)\n", | ||||
|     "        self.fc1 = nn.Linear(16 * 5 * 5, 120)\n", | ||||
|     "        self.fc1 = nn.Linear(16 * 6 * 6, 120)\n", | ||||
|     "        self.fc2 = nn.Linear(120, 84)\n", | ||||
|     "        self.dorpout = nn.Dropout(p=configuration_dict.get('dropout', 0.25))\n", | ||||
|     "        self.fc3 = nn.Linear(84, 10)\n", | ||||
| @ -95,7 +94,7 @@ | ||||
|     "    def forward(self, x):\n", | ||||
|     "        x = self.pool(F.relu(self.conv1(x)))\n", | ||||
|     "        x = self.pool(F.relu(self.conv2(x)))\n", | ||||
|     "        x = x.view(-1, 16 * 5 * 5)\n", | ||||
|     "        x = x.view(-1, 16 * 6 * 6)\n", | ||||
|     "        x = F.relu(self.fc1(x))\n", | ||||
|     "        x = F.relu(self.fc2(x))\n", | ||||
|     "        x = self.fc3(self.dorpout(x))\n", | ||||
|  | ||||
		Loading…
	
		Reference in New Issue
	
	Block a user
	 allegroai
						allegroai