mirror of
https://github.com/clearml/clearml-serving
synced 2025-02-07 21:23:39 +00:00
29 lines
1.6 KiB
Markdown
29 lines
1.6 KiB
Markdown
# Train and Deploy XGBoost model
|
|
|
|
## training iris classifier model
|
|
|
|
Run the mock python training code
|
|
```bash
|
|
pip install -r examples/xgboost/requirements.txt
|
|
python examples/xgboost/train_model.py
|
|
```
|
|
|
|
The output will be a model created on the project "serving examples", by the name "train xgboost model"
|
|
|
|
## setting up the serving service
|
|
|
|
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
|
|
2. Create model endpoint:
|
|
|
|
3. `clearml-serving --id <service_id> model add --engine xgboost --endpoint "test_model_xgb" --preprocess "examples/xgboost/preprocess.py" --name "train xgboost model" --project "serving examples"`
|
|
Or auto update
|
|
`clearml-serving --id <service_id> model auto-update --engine xgboost --endpoint "test_model_xgb_auto" --preprocess "examples/xgboost/preprocess.py" --name "train xgboost model" --project "serving examples" --max-versions 2`
|
|
Or add Canary endpoint
|
|
`clearml-serving --id <service_id> model canary --endpoint "test_model_xgb_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_xgb_auto`
|
|
|
|
4. Run the clearml-serving container `docker run -v ~/clearml.conf:/root/clearml.conf -p 8080:8080 -e CLEARML_SERVING_TASK_ID=<service_id> clearml-serving:latest`
|
|
5. Test new endpoint: `curl -X POST "http://127.0.0.1:8080/serve/test_model_xgb" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2, "x2": 3, "x3": 4}'`
|
|
|
|
> **_Notice:_** You can also change the serving service while it is already running!
|
|
This includes adding/removing endpoints, adding canary model routing etc.
|