mirror of
https://github.com/clearml/clearml-serving
synced 2025-06-26 18:16:00 +00:00
Add missing requirements
This commit is contained in:
parent
78436106f5
commit
451e335ceb
@ -248,7 +248,7 @@ Example:
|
||||
- `curl -X POST "http://127.0.0.1:8080/serve/test_model" -H "accept: application/json" -H "Content-Type: application/json" -d '{"x0": 1, "x1": 2}'`
|
||||
|
||||
|
||||
### Model inference Examples
|
||||
### Model Serving Examples
|
||||
|
||||
- Scikit-Learn [example](examples/sklearn/readme.md) - random data
|
||||
- XGBoost [example](examples/xgboost/readme.md) - iris dataset
|
||||
|
@ -1,6 +1,6 @@
|
||||
clearml >= 1.1.6
|
||||
clearml-serving
|
||||
tritonclient
|
||||
tritonclient[grpc]
|
||||
grpcio
|
||||
Pillow
|
||||
pathlib2
|
@ -11,4 +11,6 @@ numpy
|
||||
pandas
|
||||
scikit-learn
|
||||
grpcio
|
||||
Pillow
|
||||
Pillow
|
||||
xgboost
|
||||
lightgbm
|
||||
|
@ -1,10 +1,11 @@
|
||||
# Train and Deploy Keras model with Nvidia Triton Engine
|
||||
|
||||
## training mock model
|
||||
## training mnist digit classifier model
|
||||
|
||||
Run the mock python training code
|
||||
```bash
|
||||
python3 train_keras_mnist.py
|
||||
pip install -r examples/keras/requirements.txt
|
||||
python examples/keras/train_keras_mnist.py
|
||||
```
|
||||
|
||||
The output will be a model created on the project "serving examples", by the name "train keras model"
|
||||
@ -13,10 +14,10 @@ The output will be a model created on the project "serving examples", by the nam
|
||||
|
||||
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
|
||||
2. Create model endpoint:
|
||||
`clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_keras" --preprocess "preprocess.py" --name "train keras model" --project "serving examples" --input-size 1 784 --input-name "dense_input" --input-type float32 --output-size -1 10 --output-name "activation_2" --output-type float32
|
||||
`clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_keras" --preprocess "examples/keras/preprocess.py" --name "train keras model" --project "serving examples" --input-size 1 784 --input-name "dense_input" --input-type float32 --output-size -1 10 --output-name "activation_2" --output-type float32
|
||||
`
|
||||
Or auto update
|
||||
`clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_auto" --preprocess "preprocess.py" --name "train keras model" --project "serving examples" --max-versions 2
|
||||
`clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_auto" --preprocess "examples/keras/preprocess.py" --name "train keras model" --project "serving examples" --max-versions 2
|
||||
--input-size 1 784 --input-name "dense_input" --input-type float32
|
||||
--output-size -1 10 --output-name "activation_2" --output-type float32
|
||||
`
|
||||
@ -31,16 +32,3 @@ Or add Canary endpoint
|
||||
|
||||
> **_Notice:_** You can also change the serving service while it is already running!
|
||||
This includes adding/removing endpoints, adding canary model routing etc.
|
||||
|
||||
|
||||
### Running / debugging the serving service manually
|
||||
Once you have setup the Serving Service Task
|
||||
|
||||
```bash
|
||||
$ pip3 install -r clearml_serving/serving/requirements.txt
|
||||
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
|
||||
--preload clearml_serving.serving.main:app \
|
||||
--workers 4 \
|
||||
--worker-class uvicorn.workers.UvicornWorker \
|
||||
--bind 0.0.0.0:8080
|
||||
```
|
||||
|
@ -1,10 +1,11 @@
|
||||
# Train and Deploy LightGBM model
|
||||
|
||||
## training mock model
|
||||
## training iris classifier model
|
||||
|
||||
Run the mock python training code
|
||||
```bash
|
||||
python3 train_model.py
|
||||
pip install -r examples/lightgbm/requirements.txt
|
||||
python examples/lightgbm/train_model.py
|
||||
```
|
||||
|
||||
The output will be a model created on the project "serving examples", by the name "train lightgbm model"
|
||||
@ -15,9 +16,9 @@ The output will be a model created on the project "serving examples", by the nam
|
||||
|
||||
2. Create model endpoint:
|
||||
|
||||
3. `clearml-serving --id <service_id> model add --engine lightgbm --endpoint "test_model_lgbm" --preprocess "preprocess.py" --name "train lightgbm model" --project "serving examples"`
|
||||
3. `clearml-serving --id <service_id> model add --engine lightgbm --endpoint "test_model_lgbm" --preprocess "examples/lightgbm/preprocess.py" --name "train lightgbm model" --project "serving examples"`
|
||||
Or auto-update
|
||||
`clearml-serving --id <service_id> model auto-update --engine lightgbm --endpoint "test_model_auto" --preprocess "preprocess.py" --name "train lightgbm model" --project "serving examples" --max-versions 2`
|
||||
`clearml-serving --id <service_id> model auto-update --engine lightgbm --endpoint "test_model_auto" --preprocess "examples/lightgbm/preprocess.py" --name "train lightgbm model" --project "serving examples" --max-versions 2`
|
||||
Or add Canary endpoint
|
||||
`clearml-serving --id <service_id> model canary --endpoint "test_model_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_auto`
|
||||
|
||||
@ -27,16 +28,3 @@ Or add Canary endpoint
|
||||
|
||||
> **_Notice:_** You can also change the serving service while it is already running!
|
||||
This includes adding/removing endpoints, adding canary model routing etc.
|
||||
|
||||
|
||||
### Running / debugging the serving service manually
|
||||
Once you have setup the Serving Service Task
|
||||
|
||||
```bash
|
||||
$ pip3 install -r clearml_serving/serving/requirements.txt
|
||||
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
|
||||
--preload clearml_serving.serving.main:app \
|
||||
--workers 4 \
|
||||
--worker-class uvicorn.workers.UvicornWorker \
|
||||
--bind 0.0.0.0:8080
|
||||
```
|
||||
|
3
examples/lightgbm/requirements.txt
Normal file
3
examples/lightgbm/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
clearml >= 1.1.6
|
||||
lightgbm
|
||||
|
@ -1,10 +1,11 @@
|
||||
# Train and Deploy Keras model with Nvidia Triton Engine
|
||||
|
||||
## training mock model
|
||||
## training mnist digit classifier model
|
||||
|
||||
Run the mock python training code
|
||||
```bash
|
||||
python3 train_pytorch_mnist.py
|
||||
pip install -r examples/pytorch/requirements.txt
|
||||
python examples/pytorch/train_pytorch_mnist.py
|
||||
```
|
||||
|
||||
The output will be a model created on the project "serving examples", by the name "train pytorch model"
|
||||
@ -14,12 +15,12 @@ The output will be a model created on the project "serving examples", by the nam
|
||||
|
||||
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
|
||||
2. Create model endpoint:
|
||||
`clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_pytorch" --preprocess "preprocess.py" --name "train pytorch model" --project "serving examples"
|
||||
`clearml-serving --id <service_id> model add --engine triton --endpoint "test_model_pytorch" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples"
|
||||
--input-size 28 28 1 --input-name "INPUT__0" --input-type float32
|
||||
--output-size -1 10 --output-name "OUTPUT__0" --output-type float32
|
||||
`
|
||||
Or auto update
|
||||
`clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_pytorch_auto" --preprocess "preprocess.py" --name "train pytorch model" --project "serving examples" --max-versions 2
|
||||
`clearml-serving --id <service_id> model auto-update --engine triton --endpoint "test_model_pytorch_auto" --preprocess "examples/pytorch/preprocess.py" --name "train pytorch model" --project "serving examples" --max-versions 2
|
||||
--input-size 28 28 1 --input-name "INPUT__0" --input-type float32
|
||||
--output-size -1 10 --output-name "OUTPUT__0" --output-type float32
|
||||
`
|
||||
@ -35,15 +36,3 @@ Or add Canary endpoint
|
||||
> **_Notice:_** You can also change the serving service while it is already running!
|
||||
This includes adding/removing endpoints, adding canary model routing etc.
|
||||
|
||||
|
||||
### Running / debugging the serving service manually
|
||||
Once you have setup the Serving Service Task
|
||||
|
||||
```bash
|
||||
$ pip3 install -r clearml_serving/serving/requirements.txt
|
||||
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
|
||||
--preload clearml_serving.serving.main:app \
|
||||
--workers 4 \
|
||||
--worker-class uvicorn.workers.UvicornWorker \
|
||||
--bind 0.0.0.0:8080
|
||||
```
|
||||
|
@ -1,10 +1,11 @@
|
||||
# Train and Deploy Scikit-Learn model
|
||||
|
||||
## training mock model
|
||||
## training mock logistic regression model
|
||||
|
||||
Run the mock python training code
|
||||
```bash
|
||||
python3 train_model.py
|
||||
pip install -r examples/sklearn/requirements.txt
|
||||
python examples/sklearn/train_model.py
|
||||
```
|
||||
|
||||
The output will be a model created on the project "serving examples", by the name "train sklearn model"
|
||||
@ -13,9 +14,9 @@ The output will be a model created on the project "serving examples", by the nam
|
||||
|
||||
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
|
||||
2. Create model endpoint:
|
||||
`clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "preprocess.py" --name "train sklearn model" --project "serving examples"`
|
||||
`clearml-serving --id <service_id> model add --engine sklearn --endpoint "test_model_sklearn" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples"`
|
||||
Or auto update
|
||||
`clearml-serving --id <service_id> model auto-update --engine sklearn --endpoint "test_model_sklearn_auto" --preprocess "preprocess.py" --name "train sklearn model" --project "serving examples" --max-versions 2`
|
||||
`clearml-serving --id <service_id> model auto-update --engine sklearn --endpoint "test_model_sklearn_auto" --preprocess "examples/sklearn/preprocess.py" --name "train sklearn model" --project "serving examples" --max-versions 2`
|
||||
Or add Canary endpoint
|
||||
`clearml-serving --id <service_id> model canary --endpoint "test_model_sklearn_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_sklearn_auto`
|
||||
|
||||
@ -24,16 +25,3 @@ Or add Canary endpoint
|
||||
|
||||
> **_Notice:_** You can also change the serving service while it is already running!
|
||||
This includes adding/removing endpoints, adding canary model routing etc.
|
||||
|
||||
|
||||
### Running / debugging the serving service manually
|
||||
Once you have setup the Serving Service Task
|
||||
|
||||
```bash
|
||||
$ pip3 install -r clearml_serving/serving/requirements.txt
|
||||
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
|
||||
--preload clearml_serving.serving.main:app \
|
||||
--workers 4 \
|
||||
--worker-class uvicorn.workers.UvicornWorker \
|
||||
--bind 0.0.0.0:8080
|
||||
```
|
||||
|
2
examples/sklearn/requirements.txt
Normal file
2
examples/sklearn/requirements.txt
Normal file
@ -0,0 +1,2 @@
|
||||
clearml >= 1.1.6
|
||||
scikit-learn
|
@ -1,10 +1,11 @@
|
||||
# Train and Deploy XGBoost model
|
||||
|
||||
## training mock model
|
||||
## training iris classifier model
|
||||
|
||||
Run the mock python training code
|
||||
```bash
|
||||
python3 train_model.py
|
||||
pip install -r examples/xgboost/requirements.txt
|
||||
python examples/xgboost/train_model.py
|
||||
```
|
||||
|
||||
The output will be a model created on the project "serving examples", by the name "train xgboost model"
|
||||
@ -14,9 +15,9 @@ The output will be a model created on the project "serving examples", by the nam
|
||||
1. Create serving Service: `clearml-serving create --name "serving example"` (write down the service ID)
|
||||
2. Create model endpoint:
|
||||
|
||||
3. `clearml-serving --id <service_id> model add --engine xgboost --endpoint "test_model_xgb" --preprocess "preprocess.py" --name "train xgboost model" --project "serving examples"`
|
||||
3. `clearml-serving --id <service_id> model add --engine xgboost --endpoint "test_model_xgb" --preprocess "examples/xgboost/preprocess.py" --name "train xgboost model" --project "serving examples"`
|
||||
Or auto update
|
||||
`clearml-serving --id <service_id> model auto-update --engine xgboost --endpoint "test_model_xgb_auto" --preprocess "preprocess.py" --name "train xgboost model" --project "serving examples" --max-versions 2`
|
||||
`clearml-serving --id <service_id> model auto-update --engine xgboost --endpoint "test_model_xgb_auto" --preprocess "examples/xgboost/preprocess.py" --name "train xgboost model" --project "serving examples" --max-versions 2`
|
||||
Or add Canary endpoint
|
||||
`clearml-serving --id <service_id> model canary --endpoint "test_model_xgb_auto" --weights 0.1 0.9 --input-endpoint-prefix test_model_xgb_auto`
|
||||
|
||||
@ -25,16 +26,3 @@ Or add Canary endpoint
|
||||
|
||||
> **_Notice:_** You can also change the serving service while it is already running!
|
||||
This includes adding/removing endpoints, adding canary model routing etc.
|
||||
|
||||
|
||||
### Running / debugging the serving service manually
|
||||
Once you have setup the Serving Service Task
|
||||
|
||||
```bash
|
||||
$ pip3 install -r clearml_serving/serving/requirements.txt
|
||||
$ CLEARML_SERVING_TASK_ID=<service_id> PYHTONPATH=$(pwd) python3 -m gunicorn \
|
||||
--preload clearml_serving.serving.main:app \
|
||||
--workers 4 \
|
||||
--worker-class uvicorn.workers.UvicornWorker \
|
||||
--bind 0.0.0.0:8080
|
||||
```
|
||||
|
3
examples/xgboost/requirements.txt
Normal file
3
examples/xgboost/requirements.txt
Normal file
@ -0,0 +1,3 @@
|
||||
clearml >= 1.1.6
|
||||
xgboost
|
||||
|
Loading…
Reference in New Issue
Block a user