clearml-docs/docs/deploying_clearml/enterprise_deploy/multi_tenant_k8s.md

17 KiB

title
Multi-Tenant Service on Kubernetes

This guide provides step-by-step instructions for installing a ClearML multi-tenant service on a Kubernetes cluster.

It covers the installation and configuration steps necessary to set up ClearML in a cloud environment, including enabling specific features and setting up necessary components.

Prerequisites

  • A Kubernetes cluster
  • Credentials for the ClearML Enterprise Helm chart repository
  • Credentials for the ClearML Enterprise DockerHub repository
  • Credentials for the ClearML billing DockerHub repository
  • URL for downloading the ClearML Enterprise applications configuration
  • ClearML Billing server Helm chart

Setting up ClearML Helm Repository

You need to add the ClearML Enterprise Helm repository to your local Helm setup. This repository contains the Helm charts required for deploying the ClearML Server and its components.

To add the ClearML Enterprise repository using the following command. Replace <TOKEN> with the private tokens sent to you by ClearML:

helm repo add allegroai-enterprise <https://raw.githubusercontent.com/allegroai/clearml-enterprise-helm-charts/gh-pages> --username <TOKEN> --password <TOKEN>

Enabling Dynamic MIG GPUs

Allocating GPU fractions dynamically make use of the NVIDIA GPU operator.

  1. Add the NVIDIA Helm repository:

    helm repo add nvidia <https://nvidia.github.io/gpu-operator>
    helm repo update
    
  2. Install the NVIDIA GPU operator with the following configuration:

    helm install -n gpu-operator \\
      gpu-operator \\
      nvidia/gpu-operator \\
      --create-namespace \\
      --set migManager.enabled=false \\
      --set mig.strategy=mixed
    

Install CDMO Chart

The ClearML Dynamic MIG Operator (CDMO) enables running AI workloads on k8s with optimized hardware utilization and workload performance by facilitating MIG GPUs partitioning.

  1. Prepare the overrides.yaml file so it will contain the following content. Replace <allegroaienterprise_DockerHub_TOKEN> with the private token provided by ClearML:

    imageCredentials:
      password: "<allegroaienterprise_DockerHub_TOKEN>"
    
  2. Install the CDMO chart:

    helm install -n cdmo-operator \\
         cdmo \\
         allegroai-enterprise/clearml-dynamic-mig-operator \\
         --create-namespace \\
         -f overrides.yaml
    

Enable MIG support

  1. Enable dynamic MIG support on your cluster by running the following command on all nodes used for training (run for each GPU ID in your cluster):

    nvidia-smi -i <gpu_id> -mig 1
    

    This command can be issued from inside the nvidia-device-plugin-daemonset pod on the related node.

    If the result of the previous command indicates that a node reboot is necessary, perform the reboot.

  2. After enabling MIG support, label the MIG GPU nodes accordingly. This labeling helps in identifying nodes configured with MIG support for resource management and scheduling:

    kubectl label nodes <node-name> "cdmo.clear.ml/gpu-partitioning=mig"
    

Install ClearML Chart

Install the ClearML chart with the required configuration:

  1. Prepare the overrides.yaml file and input the following content. Make sure to replace <BASE_DOMAIN> and <SSO_*> with a valid domain that will have records pointing to the ingress controller accordingly.
    The credentials specified in <SUPERVISOR_USER_KEY> and <SUPERVISOR_USER_SECRET> can be used to log in as the supervisor user in the web UI.
    Note that the <SUPERVISOR_USER_EMAIL> value must be explicitly quoted. To do so, put \\" around the quoted value. For example "\\"email@example.com\\””

    imageCredentials:
      password: "<allegroaienterprise_DockerHub_TOKEN>"
    clearml:
      cookieDomain: "<BASE_DOMAIN>"
    apiserver:
      image:
        tag: "3.21.6-1443"
      ingress:
        enabled: true
        hostName: "api.<BASE_DOMAIN>"
      service:
        type: ClusterIP
      extraEnvs:
        - name: CLEARML__billing__enabled:
          value: "true"
        - name: CLEARML__HOSTS__KAFKA__BILLING__HOST
          value: "[clearml-billing-kafka.clearml-billing:9092]"
        - name: CLEARML__HOSTS__REDIS__BILLING__HOST
          value: clearml-billing-redis-master.clearml-billing
        - name: CLEARML__HOSTS__REDIS__BILLING__DB
          value: "2"
        - name: CLEARML__SECURE__KAFKA__BILLING__security_protocol
          value: SASL_PLAINTEXT
        - name: CLEARML__SECURE__KAFKA__BILLING__sasl_mechanism
          value: SCRAM-SHA-512
        - name: CLEARML__SECURE__KAFKA__BILLING__sasl_plain_username
          value: billing
        - name: CLEARML__SECURE__KAFKA__BILLING__sasl_plain_password
          value: "jdhfKmsd1"
        - name: CLEARML__secure__login__sso__oauth_client__auth0__client_id
          value: "<SSO_CLIENT_ID>"
        - name: CLEARML__secure__login__sso__oauth_client__auth0__client_secret
          value: "<SSO_CLIENT_SECRET>"
        - name: CLEARML__services__login__sso__oauth_client__auth0__base_url
          value: "<SSO_CLIENT_URL>"
        - name: CLEARML__services__login__sso__oauth_client__auth0__authorize_url
          value: "<SSO_CLIENT_AUTHORIZE_URL>"
        - name: CLEARML__services__login__sso__oauth_client__auth0__access_token_url
          value: "<SSO_CLIENT_ACCESS_TOKEN_URL>"
        - name: CLEARML__services__login__sso__oauth_client__auth0__audience
          value: "<SSO_CLIENT_AUDIENCE>"
        - name: CLEARML__services__organization__features__user_management_advanced
          value: "true"
        - name: CLEARML__services__auth__ui_features_per_role__user__show_datasets
          value: "false"
        - name: CLEARML__services__auth__ui_features_per_role__user__show_orchestration
          value: "false"
        - name: CLEARML__services__applications__max_running_apps_per_company
          value: "3"
        - name: CLEARML__services__auth__default_groups__users__features
          value: "[\\"applications\\"]"
        - name: CLEARML__services__auth__default_groups__admins__features
          value: "[\\"config_vault\\", \\"experiments\\", \\"queues\\", \\"show_projects\\", \\"resource_dashboard\\", \\"user_management\\", \\"user_management_advanced\\", \\"app_management\\", \\"sso_management\\", \\"service_users\\", \\"resource_policy\\"]"
            - name: CLEARML__services__workers__resource_usages__supervisor_company
          value: "d1bd92a3b039400cbafc60a7a5b1e52b" # Default company
        - name: CLEARML__secure__credentials__supervisor__role
          value: "system"
        - name: CLEARML__secure__credentials__supervisor__allow_login
          value: "true"
        - name: CLEARML__secure__credentials__supervisor__user_key
          value: "<SUPERVISOR_USER_KEY>"
        - name: CLEARML__secure__credentials__supervisor__user_secret
          value: "<SUPERVISOR_USER_SECRET>"
        - name: CLEARML__secure__credentials__supervisor__sec_groups
          value: "[\\"users\\", \\"admins\\", \\"queue_admins\\"]"
        - name: CLEARML__secure__credentials__supervisor__email
          value: "\\"<SUPERVISOR_USER_EMAIL>\\""
        - name: CLEARML__apiserver__company__unique_names
          value: "true"
    fileserver:
      ingress:
        enabled: true
        hostName: "file.<BASE_DOMAIN>"
      service:
        type: ClusterIP
    webserver:
      image:
        tag: "3.21.3-1657"
      ingress:
        enabled: true
        hostName: "app.<BASE_DOMAIN>"
      service:
        type: ClusterIP
    clearmlApplications:
      enabled: true
    
  2. Install ClearML

    helm install -n clearml \\
         clearml \\
         allegroai-enterprise/clearml-enterprise \\
         --create-namespace \\
         -f overrides.yaml
    

Shared Redis installation

Set up a shared Redis instance that multiple components of your ClearML deployment can use:

  1. lf not there already, add Bitnami repository:

    helm repo add bitnami <https://charts.bitnami.com/bitnami>
    
  2. Prepare the overrides.yaml with the following content:

    auth:
      password: "sdkWoq23"
    
  3. Install Redis:

    helm install -n redis-shared \\
         redis \\
         bitnami/redis \\
         --create-namespace \\
         --version=17.8.3 \\
         -f overrides.yaml
    

Install Billing Chart

The billing chart is not available as part of the ClearML private Helm repo. clearml-billing-1.1.0.tgz is directly provided by the ClearML team.

  1. Prepare values.override.yaml - Create the file with the following content, replacing <billing_DockerHub_TOKEN> with the appropriate value:

    imageCredentials:
      username: dockerhubcustpocbillingaccess
      password: "<billing_DockerHub_TOKEN>"
    
  2. Install the billing chart:

    helm install -n clearml-billing \\
         clearml-billing \\
         clearml-billing-1.0.0.tgz \\
         --create-namespace \\
         -f overrides.yaml
    

Namespace Isolation using Network Policies

For enhanced security, isolate namespaces using the following NetworkPolicies:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-ingress
  namespace: clearml
spec:
  podSelector: {}
  policyTypes:
    - Ingress
  ingress:
    - from:
      - podSelector: {}
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-clearml-ingress
  namespace: clearml
spec:
  podSelector:
    matchLabels:
      app.kubernetes.io/name: clearml-clearml-enterprise
  policyTypes:
    - Ingress
  ingress:
    - from:
      - ipBlock:
          cidr: 0.0.0.0/0
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-clearml-ingress
  namespace: clearml-billing
spec:
  podSelector: {}
  policyTypes:
    - Ingress
  ingress:
  - from:
    - podSelector: {}
    - namespaceSelector:
        matchLabels:
          kubernetes.io/metadata.name: clearml

Applications Installation

To install ClearML GUI applications, follow these steps:

  1. Get the apps to install and the installation script by downloading and extracting the archive provided by ClearML

    wget -O apps.zip "<ClearML enterprise applications configuration download url>"
    unzip apps.zip
    
  2. Install the apps:

    python upload_apps.py \\ --host $APISERVER_ADDRESS \\ --user $APISERVER_USER --password $APISERVER_PASSWORD \\ --dir apps -ml
    

Tenant Configuration

Create tenants and corresponding admin users, and set up an SSO domain whitelist for secure access. To configure tenants, follow these steps (all requests must be authenticated by root or admin). Note that placeholders like <PLACEHOLDER> must be substituted with valid domain names or values from responses.

  1. Define the following variables:

    APISERVER_URL="https://api.<BASE_DOMAIN>"
    APISERVER_KEY="GGS9F4M6XB2DXJ5AFT9F"
    APISERVER_SECRET="2oGujVFhPfaozhpuz2GzQfA5OyxmMsR3WVJpsCR5hrgHFs20PO"
    
  2. Create a Tenant (company):

    curl $APISERVER_URL/system.create_company \\
    -H "Content-Type: application/json" \\
    -u $APISERVER_KEY:$APISERVER_SECRET \\
    -d '{"name":"<TENANT_NAME>"}'
    

    This returns the new Company ID (<COMPANY_ID>). If needed, you can list all companies with the following command:

    curl -u $APISERVER_KEY:$APISERVER_SECRET $APISERVER_URL/system.get_companies
    
  3. Create an Admin User:

    curl $APISERVER_URL/auth.create_user \\
    -H "Content-Type: application/json" \\
    -u $APISERVER_KEY:$APISERVER_SECRET \\
    -d '{"name":"<ADMIN_USER_NAME>","company":"<COMPANY_ID>","email":"<ADMIN_USER_EMAIL>","role":"admin"}'
    

    This returns the new User ID (<USER_ID>).

  4. Generate Credentials for the new Admin User:

    curl $APISERVER_URL/auth.create_credentials \\
    -H "Content-Type: application/json" \\
    -H "X-Clearml-Impersonate-As: <USER_ID>" \\
    -u $APISERVER_KEY:$APISERVER_SECRET
    

    This returns a set of key and secret credentials associated with the new Admin User.

  5. Create an SSO Domain Whitelist. The <USERS_EMAIL_DOMAIN> is the email domain setup for users to access through SSO.

    curl $APISERVER_URL/login.set_domains \\
    -H "Content-Type: application/json" \\
    -H "X-Clearml-Act-As: <USER_ID>" \\
    -u $APISERVER_KEY:$APISERVER_SECRET \\
    -d '{"domains":["<USERS_EMAIL_DOMAIN>"]}'
    

Install ClearML Agent Chart

To install the ClearML Agent Chart, follow these steps:

  1. Prepare the overrides.yaml file with the following content. Make sure to replace placeholders like <allegroaienterprise_DockerHub_TOKEN>, <BASE_DOMAIN>, and <TENANT_NAMESPACE> with the appropriate values:

    imageCredentials:
      password: "<allegroaienterprise_DockerHub_TOKEN>"
    clearml:
      agentk8sglueKey: "-" # TODO --> Generate credentials from API in the new tenant
      agentk8sglueSecret: "-" # TODO --> Generate credentials from API in the new tenant
    agentk8sglue:
      extraEnvs:
        - name: CLEARML_K8S_SUPPORT_SUSPENSION
          value: "1"
        - name: CLEARML_K8S_PORTS_MODE_ON_REQUEST_ONLY
          value: "1"
        - name: CLEARML_AGENT_REDIS_HOST
          value: "redis-master.redis-shared"
        - name: CLEARML_AGENT_REDIS_PORT
          value: "6379"
        - name: CLEARML_AGENT_REDIS_DB
          value: "0"
        - name: CLEARML_AGENT_REDIS_PASSWORD
          value: "sdkWoq23"
      image:
        tag: 1.24-1.8.1rc99-159
      monitoredResources:
        maxResources: 3
        minResourcesFieldName: "metadata|labels|required-resources"
        maxResourcesFieldName: "metadata|labels|required-resources"
      apiServerUrlReference: "https://api.<BASE_DOMAIN>"
      fileServerUrlReference: "https://file.<BASE_DOMAIN>"
      webServerUrlReference: "https://app.<BASE_DOMAIN>"
      defaultContainerImage: "python:3.9"
      debugMode: true
      createQueues: true
      queues:
        default:
          templateOverrides:
            labels:
              required-resources: "0.5"
              billing-monitored: "true"
          queueSettings:
            maxPods: 10
        gpu-fraction-1_00:
          templateOverrides:
            labels:
              required-resources: "1"
              billing-monitored: "true"
            resources:
              limits:
                nvidia.com/mig-7g.40gb: 1
                clear.ml/fraction-1: "1"
          queueSettings:
            maxPods: 10
        gpu-fraction-0_50:
          templateOverrides:
            labels:
              required-resources: "0.5"
              billing-monitored: "true"
            resources:
              limits:
                nvidia.com/mig-3g.20gb: 1
                clear.ml/fraction-1: "0.5"
          queueSettings:
            maxPods: 10
        gpu-fraction-0_25:
          templateOverrides:
            labels:
              required-resources: "0.25"
              billing-monitored: "true"
            resources:
              limits:
                nvidia.com/mig-2g.10gb: 1
                clear.ml/fraction-1: "0.25"
          queueSettings:
            maxPods: 10
    sessions:
      portModeEnabled: false  # set to true when using TCP ports mode
      agentID: "<TENANT_NAMESPACE>"
      externalIP: 0.0.0.0  # IP of one of the workers
      startingPort: 31010  # be careful to not overlap other tenants (startingPort + maxServices)
      maxServices: 10
    
  2. Install the ClearML Agent Chart in the specified tenant namespace:

    helm install -n <TENANT_NAMESPACE> \\
         clearml-agent \\
         allegroai-enterprise/clearml-enterprise-agent \\
         --create-namespace \\
         -f overrides.yaml
    
  3. Create a queue via the API:

    curl $APISERVER_URL/queues.create \\
    -H "Content-Type: application/json" \\
    -H "X-Clearml-Impersonate-As: 75557e2ab172405bbe153705e91d1782" \\
    -u $APISERVER_KEY:$APISERVER_SECRET \\
    -d '{"name":"default"}'
    

Tenant Namespace isolation with NetworkPolicies

To ensure network isolation for each tenant, you need to create a NetworkPolicy in the tenant namespace. This way the entire namespace/tenant will not accept any connection from other namespaces.

Create a NetworkPolicy in the tenant namespace with the following configuration:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-ingress
spec:
  podSelector: {}
  policyTypes:
    - Ingress
  ingress:
    - from:
      - podSelector: {}

Install Task Traffic Router Chart

Install the Task Traffic Router in your Kubernetes cluster, allowing it to manage and route tasks:

  1. Prepare the overrides.yaml file with the following content:

    imageCredentials:
      password: "<allegroaienterprise_DockerHub_TOKEN>"
    clearml:
      apiServerUrlReference: "<http://clearml-enterprise-apiserver.clearml:8008>"
      apiserverKey: "<TENANT_KEY>"
      apiserverSecret: "<TENANT_SECRET>"
      jwksKey: "ymLh1ok5k5xNUQfS944Xdx9xjf0wueokqKM2dMZfHuH9ayItG2"
    ingress:
      enabled: true
      hostName: "<unique url in same domain as apiserver/webserver>"
    
  2. Install Task Traffic Router in the specified tenant namespace:

    helm install -n <TENANT_NAMESPACE> \\
         clearml-ttr \\
         allegroai-enterprise/clearml-task-traffic-router \\
         --create-namespace \\
         -f overrides.yaml