clearml-docs/docs/deploying_clearml/enterprise_deploy/multi_tenant_k8s.md

544 lines
17 KiB
Markdown
Raw Normal View History

---
title: Multi-Tenant Service on Kubernetes
---
This guide provides step-by-step instructions for installing a ClearML multi-tenant service on a Kubernetes cluster.
It covers the installation and configuration steps necessary to set up ClearML in a cloud environment, including
enabling specific features and setting up necessary components.
## Prerequisites
* A Kubernetes cluster
* Credentials for the ClearML Enterprise Helm chart repository
* Credentials for the ClearML Enterprise DockerHub repository
* Credentials for the ClearML billing DockerHub repository
* URL for downloading the ClearML Enterprise applications configuration
* ClearML Billing server Helm chart
## Setting up ClearML Helm Repository
You need to add the ClearML Enterprise Helm repository to your local Helm setup. This repository contains the Helm
charts required for deploying the ClearML Server and its components.
To add the ClearML Enterprise repository using the following command. Replace `<TOKEN>` with the private tokens sent to
you by ClearML:
```
helm repo add allegroai-enterprise <https://raw.githubusercontent.com/allegroai/clearml-enterprise-helm-charts/gh-pages> --username <TOKEN> --password <TOKEN>
```
## Enabling Dynamic MIG GPUs
Allocating GPU fractions dynamically make use of the NVIDIA GPU operator.
1. Add the NVIDIA Helm repository:
```
helm repo add nvidia <https://nvidia.github.io/gpu-operator>
helm repo update
```
2. Install the NVIDIA GPU operator with the following configuration:
```
helm install -n gpu-operator \\
gpu-operator \\
nvidia/gpu-operator \\
--create-namespace \\
--set migManager.enabled=false \\
--set mig.strategy=mixed
```
## Install CDMO Chart
The ClearML Dynamic MIG Operator (CDMO) enables running AI workloads on k8s with optimized hardware utilization and
workload performance by facilitating MIG GPUs partitioning.
1. Prepare the `overrides.yaml` file so it will contain the following content. Replace `<allegroaienterprise_DockerHub_TOKEN>`
with the private token provided by ClearML:
```
imageCredentials:
password: "<allegroaienterprise_DockerHub_TOKEN>"
```
2. Install the CDMO chart:
```
helm install -n cdmo-operator \\
cdmo \\
allegroai-enterprise/clearml-dynamic-mig-operator \\
--create-namespace \\
-f overrides.yaml
```
### Enable MIG support
1. Enable dynamic MIG support on your cluster by running the following command on **all nodes used for training** (run
for **each GPU** ID in your cluster):
```
nvidia-smi -i <gpu_id> -mig 1
```
This command can be issued from inside the `nvidia-device-plugin-daemonset` pod on the related node.
If the result of the previous command indicates that a node reboot is necessary, perform the reboot.
2. After enabling MIG support, label the MIG GPU nodes accordingly. This labeling helps in identifying nodes configured
with MIG support for resource management and scheduling:
```
kubectl label nodes <node-name> "cdmo.clear.ml/gpu-partitioning=mig"
```
## Install ClearML Chart
Install the ClearML chart with the required configuration:
1. Prepare the `overrides.yaml` file and input the following content. Make sure to replace `<BASE_DOMAIN>` and `<SSO_*>`
with a valid domain that will have records pointing to the ingress controller accordingly.
The credentials specified in `<SUPERVISOR_USER_KEY>` and `<SUPERVISOR_USER_SECRET>` can be used to log in as the
supervisor user in the web UI.
Note that the `<SUPERVISOR_USER_EMAIL>` value must be explicitly quoted. To do so, put `\\"` around the quoted value.
For example `"\\"email@example.com\\””`
```
imageCredentials:
password: "<allegroaienterprise_DockerHub_TOKEN>"
clearml:
cookieDomain: "<BASE_DOMAIN>"
apiserver:
image:
tag: "3.21.6-1443"
ingress:
enabled: true
hostName: "api.<BASE_DOMAIN>"
service:
type: ClusterIP
extraEnvs:
- name: CLEARML__billing__enabled:
value: "true"
- name: CLEARML__HOSTS__KAFKA__BILLING__HOST
value: "[clearml-billing-kafka.clearml-billing:9092]"
- name: CLEARML__HOSTS__REDIS__BILLING__HOST
value: clearml-billing-redis-master.clearml-billing
- name: CLEARML__HOSTS__REDIS__BILLING__DB
value: "2"
- name: CLEARML__SECURE__KAFKA__BILLING__security_protocol
value: SASL_PLAINTEXT
- name: CLEARML__SECURE__KAFKA__BILLING__sasl_mechanism
value: SCRAM-SHA-512
- name: CLEARML__SECURE__KAFKA__BILLING__sasl_plain_username
value: billing
- name: CLEARML__SECURE__KAFKA__BILLING__sasl_plain_password
value: "jdhfKmsd1"
- name: CLEARML__secure__login__sso__oauth_client__auth0__client_id
value: "<SSO_CLIENT_ID>"
- name: CLEARML__secure__login__sso__oauth_client__auth0__client_secret
value: "<SSO_CLIENT_SECRET>"
- name: CLEARML__services__login__sso__oauth_client__auth0__base_url
value: "<SSO_CLIENT_URL>"
- name: CLEARML__services__login__sso__oauth_client__auth0__authorize_url
value: "<SSO_CLIENT_AUTHORIZE_URL>"
- name: CLEARML__services__login__sso__oauth_client__auth0__access_token_url
value: "<SSO_CLIENT_ACCESS_TOKEN_URL>"
- name: CLEARML__services__login__sso__oauth_client__auth0__audience
value: "<SSO_CLIENT_AUDIENCE>"
- name: CLEARML__services__organization__features__user_management_advanced
value: "true"
- name: CLEARML__services__auth__ui_features_per_role__user__show_datasets
value: "false"
- name: CLEARML__services__auth__ui_features_per_role__user__show_orchestration
value: "false"
- name: CLEARML__services__applications__max_running_apps_per_company
value: "3"
- name: CLEARML__services__auth__default_groups__users__features
value: "[\\"applications\\"]"
- name: CLEARML__services__auth__default_groups__admins__features
value: "[\\"config_vault\\", \\"experiments\\", \\"queues\\", \\"show_projects\\", \\"resource_dashboard\\", \\"user_management\\", \\"user_management_advanced\\", \\"app_management\\", \\"sso_management\\", \\"service_users\\", \\"resource_policy\\"]"
- name: CLEARML__services__workers__resource_usages__supervisor_company
value: "d1bd92a3b039400cbafc60a7a5b1e52b" # Default company
- name: CLEARML__secure__credentials__supervisor__role
value: "system"
- name: CLEARML__secure__credentials__supervisor__allow_login
value: "true"
- name: CLEARML__secure__credentials__supervisor__user_key
value: "<SUPERVISOR_USER_KEY>"
- name: CLEARML__secure__credentials__supervisor__user_secret
value: "<SUPERVISOR_USER_SECRET>"
- name: CLEARML__secure__credentials__supervisor__sec_groups
value: "[\\"users\\", \\"admins\\", \\"queue_admins\\"]"
- name: CLEARML__secure__credentials__supervisor__email
value: "\\"<SUPERVISOR_USER_EMAIL>\\""
- name: CLEARML__apiserver__company__unique_names
value: "true"
fileserver:
ingress:
enabled: true
hostName: "file.<BASE_DOMAIN>"
service:
type: ClusterIP
webserver:
image:
tag: "3.21.3-1657"
ingress:
enabled: true
hostName: "app.<BASE_DOMAIN>"
service:
type: ClusterIP
clearmlApplications:
enabled: true
```
2. Install ClearML
```
helm install -n clearml \\
clearml \\
allegroai-enterprise/clearml-enterprise \\
--create-namespace \\
-f overrides.yaml
```
## Shared Redis installation
Set up a shared Redis instance that multiple components of your ClearML deployment can use:
1. lf not there already, add Bitnami repository:
```
helm repo add bitnami <https://charts.bitnami.com/bitnami>
```
2. Prepare the `overrides.yaml` with the following content:
```
auth:
password: "sdkWoq23"
```
3. Install Redis:
```
helm install -n redis-shared \\
redis \\
bitnami/redis \\
--create-namespace \\
--version=17.8.3 \\
-f overrides.yaml
```
## Install Billing Chart
The billing chart is not available as part of the ClearML private Helm repo. `clearml-billing-1.1.0.tgz` is directly
provided by the ClearML team.
1. Prepare `values.override.yaml` - Create the file with the following content, replacing `<billing_DockerHub_TOKEN>`
with the appropriate value:
```
imageCredentials:
username: dockerhubcustpocbillingaccess
password: "<billing_DockerHub_TOKEN>"
```
1. Install the billing chart:
```
helm install -n clearml-billing \\
clearml-billing \\
clearml-billing-1.0.0.tgz \\
--create-namespace \\
-f overrides.yaml
```
## Namespace Isolation using Network Policies
For enhanced security, isolate namespaces using the following NetworkPolicies:
```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: default-deny-ingress
namespace: clearml
spec:
podSelector: {}
policyTypes:
- Ingress
ingress:
- from:
- podSelector: {}
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-clearml-ingress
namespace: clearml
spec:
podSelector:
matchLabels:
app.kubernetes.io/name: clearml-clearml-enterprise
policyTypes:
- Ingress
ingress:
- from:
- ipBlock:
cidr: 0.0.0.0/0
---
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: allow-clearml-ingress
namespace: clearml-billing
spec:
podSelector: {}
policyTypes:
- Ingress
ingress:
- from:
- podSelector: {}
- namespaceSelector:
matchLabels:
kubernetes.io/metadata.name: clearml
```
## Applications Installation
To install ClearML GUI applications, follow these steps:
1. Get the apps to install and the installation script by downloading and extracting the archive provided by ClearML
```
wget -O apps.zip "<ClearML enterprise applications configuration download url>"
unzip apps.zip
```
2. Install the apps:
```
python upload_apps.py \\ --host $APISERVER_ADDRESS \\ --user $APISERVER_USER --password $APISERVER_PASSWORD \\ --dir apps -ml
```
## Tenant Configuration
Create tenants and corresponding admin users, and set up an SSO domain whitelist for secure access. To configure tenants,
follow these steps (all requests must be authenticated by root or admin). Note that placeholders like `<PLACEHOLDER>`
must be substituted with valid domain names or values from responses.
1. Define the following variables:
```
APISERVER_URL="https://api.<BASE_DOMAIN>"
APISERVER_KEY="GGS9F4M6XB2DXJ5AFT9F"
APISERVER_SECRET="2oGujVFhPfaozhpuz2GzQfA5OyxmMsR3WVJpsCR5hrgHFs20PO"
```
2. Create a *Tenant* (company):
```
curl $APISERVER_URL/system.create_company \\
-H "Content-Type: application/json" \\
-u $APISERVER_KEY:$APISERVER_SECRET \\
-d '{"name":"<TENANT_NAME>"}'
```
This returns the new Company ID (`<COMPANY_ID>`). If needed, you can list all companies with the following command:
```
curl -u $APISERVER_KEY:$APISERVER_SECRET $APISERVER_URL/system.get_companies
```
3. Create an *Admin User*:
```
curl $APISERVER_URL/auth.create_user \\
-H "Content-Type: application/json" \\
-u $APISERVER_KEY:$APISERVER_SECRET \\
-d '{"name":"<ADMIN_USER_NAME>","company":"<COMPANY_ID>","email":"<ADMIN_USER_EMAIL>","role":"admin"}'
```
This returns the new User ID (`<USER_ID>`).
4. Generate *Credentials* for the new Admin User:
```
curl $APISERVER_URL/auth.create_credentials \\
-H "Content-Type: application/json" \\
-H "X-Clearml-Impersonate-As: <USER_ID>" \\
-u $APISERVER_KEY:$APISERVER_SECRET
```
This returns a set of key and secret credentials associated with the new Admin User.
5. Create an SSO Domain *Whitelist*. The `<USERS_EMAIL_DOMAIN>` is the email domain setup for users to access through SSO.
```
curl $APISERVER_URL/login.set_domains \\
-H "Content-Type: application/json" \\
-H "X-Clearml-Act-As: <USER_ID>" \\
-u $APISERVER_KEY:$APISERVER_SECRET \\
-d '{"domains":["<USERS_EMAIL_DOMAIN>"]}'
```
### Install ClearML Agent Chart
To install the ClearML Agent Chart, follow these steps:
1. Prepare the `overrides.yaml` file with the following content. Make sure to replace placeholders like
`<allegroaienterprise_DockerHub_TOKEN>`, `<BASE_DOMAIN>`, and `<TENANT_NAMESPACE>` with the appropriate values:
```
imageCredentials:
password: "<allegroaienterprise_DockerHub_TOKEN>"
clearml:
agentk8sglueKey: "-" # TODO --> Generate credentials from API in the new tenant
agentk8sglueSecret: "-" # TODO --> Generate credentials from API in the new tenant
agentk8sglue:
extraEnvs:
- name: CLEARML_K8S_SUPPORT_SUSPENSION
value: "1"
- name: CLEARML_K8S_PORTS_MODE_ON_REQUEST_ONLY
value: "1"
- name: CLEARML_AGENT_REDIS_HOST
value: "redis-master.redis-shared"
- name: CLEARML_AGENT_REDIS_PORT
value: "6379"
- name: CLEARML_AGENT_REDIS_DB
value: "0"
- name: CLEARML_AGENT_REDIS_PASSWORD
value: "sdkWoq23"
image:
tag: 1.24-1.8.1rc99-159
monitoredResources:
maxResources: 3
minResourcesFieldName: "metadata|labels|required-resources"
maxResourcesFieldName: "metadata|labels|required-resources"
apiServerUrlReference: "https://api.<BASE_DOMAIN>"
fileServerUrlReference: "https://file.<BASE_DOMAIN>"
webServerUrlReference: "https://app.<BASE_DOMAIN>"
defaultContainerImage: "python:3.9"
debugMode: true
createQueues: true
queues:
default:
templateOverrides:
labels:
required-resources: "0.5"
billing-monitored: "true"
queueSettings:
maxPods: 10
gpu-fraction-1_00:
templateOverrides:
labels:
required-resources: "1"
billing-monitored: "true"
resources:
limits:
nvidia.com/mig-7g.40gb: 1
clear.ml/fraction-1: "1"
queueSettings:
maxPods: 10
gpu-fraction-0_50:
templateOverrides:
labels:
required-resources: "0.5"
billing-monitored: "true"
resources:
limits:
nvidia.com/mig-3g.20gb: 1
clear.ml/fraction-1: "0.5"
queueSettings:
maxPods: 10
gpu-fraction-0_25:
templateOverrides:
labels:
required-resources: "0.25"
billing-monitored: "true"
resources:
limits:
nvidia.com/mig-2g.10gb: 1
clear.ml/fraction-1: "0.25"
queueSettings:
maxPods: 10
sessions:
portModeEnabled: false # set to true when using TCP ports mode
agentID: "<TENANT_NAMESPACE>"
externalIP: 0.0.0.0 # IP of one of the workers
startingPort: 31010 # be careful to not overlap other tenants (startingPort + maxServices)
maxServices: 10
```
2. Install the ClearML Agent Chart in the specified tenant namespace:
```
helm install -n <TENANT_NAMESPACE> \\
clearml-agent \\
allegroai-enterprise/clearml-enterprise-agent \\
--create-namespace \\
-f overrides.yaml
```
3. Create a queue via the API:
```
curl $APISERVER_URL/queues.create \\
-H "Content-Type: application/json" \\
-H "X-Clearml-Impersonate-As: 75557e2ab172405bbe153705e91d1782" \\
-u $APISERVER_KEY:$APISERVER_SECRET \\
-d '{"name":"default"}'
```
### Tenant Namespace isolation with NetworkPolicies
To ensure network isolation for each tenant, you need to create a `NetworkPolicy` in the tenant namespace. This way
the entire namespace/tenant will not accept any connection from other namespaces.
Create a `NetworkPolicy` in the tenant namespace with the following configuration:
```
apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
name: default-deny-ingress
spec:
podSelector: {}
policyTypes:
- Ingress
ingress:
- from:
- podSelector: {}
```
### Install Task Traffic Router Chart
Install the [Task Traffic Router](appgw.md) in your Kubernetes cluster, allowing it to manage and route tasks:
1. Prepare the `overrides.yaml` file with the following content:
```
imageCredentials:
password: "<allegroaienterprise_DockerHub_TOKEN>"
clearml:
apiServerUrlReference: "<http://clearml-enterprise-apiserver.clearml:8008>"
apiserverKey: "<TENANT_KEY>"
apiserverSecret: "<TENANT_SECRET>"
jwksKey: "ymLh1ok5k5xNUQfS944Xdx9xjf0wueokqKM2dMZfHuH9ayItG2"
ingress:
enabled: true
hostName: "<unique url in same domain as apiserver/webserver>"
```
2. Install Task Traffic Router in the specified tenant namespace:
```
helm install -n <TENANT_NAMESPACE> \\
clearml-ttr \\
allegroai-enterprise/clearml-task-traffic-router \\
--create-namespace \\
-f overrides.yaml
```