mirror of
https://github.com/clearml/clearml-docs
synced 2025-01-31 14:37:18 +00:00
66 lines
3.1 KiB
Markdown
66 lines
3.1 KiB
Markdown
---
|
|
title: TensorboardX
|
|
---
|
|
|
|
:::tip
|
|
If you are not already using ClearML, see [Getting Started](../getting_started/ds/ds_first_steps.md).
|
|
:::
|
|
|
|
[TensorboardX](https://tensorboardx.readthedocs.io/en/latest/tutorial.html#what-is-tensorboard-x) is a data
|
|
visualization toolkit to log information through PyTorch and visualize it through [TensorBoard](https://www.tensorflow.org/tensorboard).
|
|
ClearML automatically captures all data logged to TensorboardX, including scalars, images, video, plots, and text. All you have
|
|
to do is add two lines of code to your script:
|
|
|
|
```python
|
|
from clearml import Task
|
|
|
|
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
|
```
|
|
|
|
This will create a [ClearML Task](../fundamentals/task.md) that captures your script's information, including Git details,
|
|
uncommitted code, python environment, your TensorboardX metrics, plots, images, and text.
|
|
|
|
View the TensorboardX outputs in the [WebApp](../webapp/webapp_overview.md), in the experiment's page.
|
|
|
|
![TensorboardX WebApp scalars](../img/examples_pytorch_tensorboardx_03.png)
|
|
|
|
## Automatic Logging Control
|
|
By default, when ClearML is integrated into your script, it captures all of your TensorboardX plots, images, metrics, videos, and text.
|
|
But, you may want to have more control over what your experiment logs.
|
|
|
|
To control a task's framework logging, use the `auto_connect_frameworks` parameter of [`Task.init()`](../references/sdk/task.md#taskinit).
|
|
Completely disable all automatic logging by setting the parameter to `False`. For finer grained control of logged
|
|
frameworks, input a dictionary, with framework-boolean pairs.
|
|
|
|
For example:
|
|
|
|
```python
|
|
auto_connect_frameworks={
|
|
'tensorboard': False,'matplotlib': False, 'tensorflow': False, 'pytorch': True,
|
|
'xgboost': False, 'scikit': True, 'fastai': True, 'lightgbm': False,
|
|
'hydra': True, 'detect_repository': True, 'tfdefines': True, 'joblib': True,
|
|
'megengine': True, 'catboost': True
|
|
}
|
|
```
|
|
|
|
Note that the `tensorboard` key enables/disables automatic logging for both `TensorboardX` and `TensorBoard`.
|
|
|
|
## Manual Logging
|
|
To augment its automatic logging, ClearML also provides an explicit logging interface.
|
|
|
|
See more information about explicitly logging information to a ClearML Task:
|
|
* [Models](../clearml_sdk/model_sdk.md#manually-logging-models)
|
|
* [Configuration](../clearml_sdk/task_sdk.md#configuration) (e.g. parameters, configuration files)
|
|
* [Artifacts](../clearml_sdk/task_sdk.md#artifacts) (e.g. output files or python objects created by a task)
|
|
* [Scalars](../clearml_sdk/task_sdk.md#scalars)
|
|
* [Text/Plots/Debug Samples](../fundamentals/logger.md#manual-reporting)
|
|
|
|
### Examples
|
|
|
|
Take a look at ClearML's TensorboardX examples:
|
|
|
|
* [TensorboardX with PyTorch](../guides/frameworks/tensorboardx/tensorboardx.md) - Demonstrates ClearML logging TensorboardX scalars, debug
|
|
samples, and text in code using PyTorch
|
|
* [MegEngine MNIST](../guides/frameworks/megengine/megengine_mnist.md) - Demonstrates ClearML logging TensorboardX scalars in code using MegEngine
|
|
* [TensorboardX Video](../guides/frameworks/tensorboardx/video_tensorboardx.md) - Demonstrates ClearML logging TensorBoardX video data.
|