mirror of
https://github.com/clearml/clearml-docs
synced 2025-04-15 05:04:31 +00:00
Small edits (#753)
This commit is contained in:
parent
c2a128a9b4
commit
0212637cec
@ -80,7 +80,7 @@ errors in identifying the correct default branch.
|
||||
</div>
|
||||
|
||||
## Usage
|
||||
These commands demonstrate a few useful use cases for `clearml-task`
|
||||
These commands demonstrate a few useful use cases for `clearml-task`.
|
||||
|
||||
### Executing Code from a Remote Repository
|
||||
|
||||
|
@ -799,9 +799,11 @@ APIClient. The body of the call must contain the ``queue-id`` and the tags to ad
|
||||
|
||||
For example, force workers on for a queue using the APIClient:
|
||||
|
||||
from clearml.backend_api.session.client import APIClient
|
||||
client = APIClient()
|
||||
client.queues.update(queue="<queue_id>", tags=["force_workers:on"]
|
||||
```python
|
||||
from clearml.backend_api.session.client import APIClient
|
||||
client = APIClient()
|
||||
client.queues.update(queue="<queue_id>", tags=["force_workers:on"])
|
||||
```
|
||||
|
||||
Or, force workers on for a queue using the REST API:
|
||||
|
||||
|
@ -335,6 +335,7 @@ You can enable offline mode in one of the following ways:
|
||||
|
||||
```python
|
||||
from clearml import Dataset
|
||||
|
||||
# Use the set_offline class method before creating a Dataset
|
||||
Dataset.set_offline(offline_mode=True)
|
||||
# Create a dataset
|
||||
|
@ -25,6 +25,7 @@ in your workspace. The following code uses APIClient to retrieve a list of all p
|
||||
|
||||
```python
|
||||
from clearml.backend_api.session.client import APIClient
|
||||
|
||||
# Create an instance of APIClient
|
||||
client = APIClient()
|
||||
project_list = client.projects.get_all(name="example*")
|
||||
|
@ -560,6 +560,7 @@ the `offline_mode` argument to `True`
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
# Use the set_offline class method before initializing a Task
|
||||
Task.set_offline(offline_mode=True)
|
||||
# Initialize a Task
|
||||
@ -594,6 +595,7 @@ Upload the execution data that the Task captured offline to the ClearML Server u
|
||||
* [`Task.import_offline_session`](../references/sdk/task.md#taskimport_offline_session) class method
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
Task.import_offline_session(session_folder_zip="path/to/session/.clearml/cache/offline/b786845decb14eecadf2be24affc7418.zip")
|
||||
```
|
||||
|
||||
|
@ -1136,6 +1136,7 @@ in your workspace. The following code uses APIClient to retrieve a list of all p
|
||||
|
||||
```python
|
||||
from clearml.backend_api.session.client import APIClient
|
||||
|
||||
# Create an instance of APIClient
|
||||
client = APIClient()
|
||||
project_list = client.projects.get_all(name="example*")
|
||||
|
@ -97,6 +97,7 @@ All Tasks in the system can be accessed through their unique Task ID, or based o
|
||||
method. For example:
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
executed_task = Task.get_task(task_id='aabbcc')
|
||||
```
|
||||
|
||||
@ -130,6 +131,7 @@ Users can programmatically change cloned experiments' parameters.
|
||||
For example:
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
cloned_task = Task.clone(task_id='aabbcc')
|
||||
cloned_task.set_parameter(name='internal/magic', value=42)
|
||||
```
|
||||
@ -141,6 +143,7 @@ objects and files to a task anywhere from code.
|
||||
```python
|
||||
import numpy as np
|
||||
from clearml import Task
|
||||
|
||||
Task.current_task().upload_artifact(name='a_file', artifact_object='local_file.bin')
|
||||
Task.current_task().upload_artifact(name='numpy', artifact_object=np.ones(4,4))
|
||||
```
|
||||
@ -150,6 +153,7 @@ by accessing the Task that created them. These artifacts can be modified and upl
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
executed_task = Task.get_task(task_id='aabbcc')
|
||||
# artifact as a file
|
||||
local_file = executed_task.artifacts['file'].get_local_copy()
|
||||
@ -173,6 +177,7 @@ improves the visibility of your processes’ progress.
|
||||
|
||||
```python
|
||||
from clearml import Logger
|
||||
|
||||
Logger.current_logger().report_scalar(
|
||||
graph='metric',
|
||||
series='variant',
|
||||
@ -184,6 +189,7 @@ Logger.current_logger().report_scalar(
|
||||
You can also retrieve reported scalars for programmatic analysis:
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
executed_task = Task.get_task(task_id='aabbcc')
|
||||
# get a summary of the min/max/last value of all reported scalars
|
||||
min_max_values = executed_task.get_last_scalar_metrics()
|
||||
@ -193,10 +199,11 @@ full_scalars = executed_task.get_reported_scalars()
|
||||
|
||||
#### Query Experiments
|
||||
You can also search and query Tasks in the system. Use the [`Task.get_tasks`](../../references/sdk/task.md#taskget_tasks)
|
||||
method to retrieve Task objects and filter based on the specific values of the Task - status, parameters, metrics and more!
|
||||
class method to retrieve Task objects and filter based on the specific values of the Task - status, parameters, metrics and more!
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
tasks = Task.get_tasks(
|
||||
project_name='examples',
|
||||
task_name='partial_name_match',
|
||||
|
@ -35,7 +35,7 @@ script.
|
||||
This ID will be used in the following section.
|
||||
|
||||
## Building and Launching a Containerized Task
|
||||
1. Execute the following command to build the container. Input the ID of the task created above.
|
||||
1. Execute the following command to build the container. Input the ID of the task created above:
|
||||
```console
|
||||
clearml-agent build --id <TASK_ID> --docker --target new-docker --entry-point clone_task
|
||||
```
|
||||
|
@ -14,6 +14,7 @@ the `offline_mode` argument to `True`
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
# Use the set_offline class method before initializing a Task
|
||||
Task.set_offline(offline_mode=True)
|
||||
# Initialize a Task
|
||||
|
@ -13,6 +13,7 @@ All you have to do is simply add two lines of code to your AutoKeras script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -13,6 +13,7 @@ All you have to do is simply add two lines of code to your CatBoost script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -14,6 +14,7 @@ All you have to do is add two lines of code:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -13,6 +13,7 @@ All you have to do is simply add two lines of code to your `fastai` script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -16,6 +16,7 @@ All you have to do is add two lines of code:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -20,6 +20,7 @@ All you have to do is add two lines of code to your script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -14,6 +14,7 @@ All you have to do is simply add two lines of code to your Keras script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -14,6 +14,7 @@ All you have to do is simply add two lines of code to your LightGBM script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -13,6 +13,7 @@ All you have to do is simply add two lines of code to your MegEngine script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -9,6 +9,7 @@ All you have to do is add two lines of code:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -13,6 +13,7 @@ All you have to do is simply add two lines of code to your PyTorch script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -15,6 +15,7 @@ All you have to do is simply add two lines of code to your PyTorch Lightning scr
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -14,6 +14,7 @@ All you have to do is simply add two lines of code to your scikit-learn script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -13,6 +13,7 @@ lines of code to your script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -12,6 +12,7 @@ lines of code to your script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -13,6 +13,7 @@ to do is add two lines of code to your script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -14,6 +14,7 @@ All you have to do is simply add two lines of code to your TensorFlow script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -14,6 +14,7 @@ All you have to do is simply add two lines of code to your XGBoost script:
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(task_name="<task_name>", project_name="<project_name>")
|
||||
```
|
||||
|
||||
|
@ -58,6 +58,7 @@ names that start with `final`.
|
||||
|
||||
```python
|
||||
from clearml import Task
|
||||
|
||||
task = Task.init(
|
||||
project_name="My Project",
|
||||
task_name="My Task",
|
||||
|
@ -8,6 +8,7 @@ Create the [PipelineController](../references/sdk/automation_controller_pipeline
|
||||
the pipeline's execution logic:
|
||||
```python
|
||||
from clearml import PipelineController
|
||||
|
||||
pipe = PipelineController(
|
||||
name="Pipeline Controller", project="Pipeline example", version="1.0.0"
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user