2020-12-22 21:00:57 +00:00
< div align = "center" >
2019-10-29 01:34:40 +00:00
2025-01-13 16:36:16 +00:00
< img src = "https://github.com/clearml/clearml-agent/blob/master/docs/clearml_agent_logo.png?raw=true" width = "250px" >
2020-12-22 21:00:57 +00:00
2024-03-11 14:58:28 +00:00
**ClearML Agent - MLOps/LLMOps made easy
MLOps/LLMOps scheduler & orchestration solution supporting Linux, macOS and Windows**
2019-10-29 01:34:40 +00:00
2025-01-13 16:36:16 +00:00
[![GitHub license ](https://img.shields.io/github/license/clearml/clearml-agent.svg )](https://img.shields.io/github/license/clearml/clearml-agent.svg)
2020-12-22 21:00:57 +00:00
[![PyPI pyversions ](https://img.shields.io/pypi/pyversions/clearml-agent.svg )](https://img.shields.io/pypi/pyversions/clearml-agent.svg)
[![PyPI version shields.io ](https://img.shields.io/pypi/v/clearml-agent.svg )](https://img.shields.io/pypi/v/clearml-agent.svg)
2022-04-01 14:48:27 +00:00
[![PyPI Downloads ](https://pepy.tech/badge/clearml-agent/month )](https://pypi.org/project/clearml-agent/)
2025-01-13 16:36:16 +00:00
[![Artifact Hub ](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/clearml )](https://artifacthub.io/packages/search?repo=clearml)
2024-03-11 14:58:28 +00:00
`🌟 ClearML is open-source - Leave a star to support the project! 🌟`
2020-12-22 21:00:57 +00:00
< / div >
2020-05-09 17:12:53 +00:00
2020-12-22 21:00:57 +00:00
---
2019-10-29 01:34:40 +00:00
2020-12-22 21:00:57 +00:00
### ClearML-Agent
2019-10-29 01:34:40 +00:00
2022-07-31 16:36:48 +00:00
#### *Formerly known as Trains Agent*
2019-10-29 11:18:51 +00:00
2020-12-22 21:00:57 +00:00
* Run jobs (experiments) on any local or cloud based resource
* Implement optimized resource utilization policies
* Deploy execution environments with either virtualenv or fully docker containerized with zero effort
* Launch-and-Forget service containers
2021-06-22 10:59:37 +00:00
* [Cloud autoscaling ](https://clear.ml/docs/latest/docs/guides/services/aws_autoscaler )
* [Customizable cleanup ](https://clear.ml/docs/latest/docs/guides/services/cleanup_service )
2023-07-19 13:51:14 +00:00
* Advanced [pipeline building and execution ](https://clear.ml/docs/latest/docs/guides/frameworks/pytorch/notebooks/table/tabular_training_pipeline )
2019-10-29 11:18:51 +00:00
2020-12-22 21:00:57 +00:00
It is a zero configuration fire-and-forget execution agent, providing a full ML/DL cluster solution.
**Full Automation in 5 steps**
2022-07-31 16:36:48 +00:00
2025-01-13 16:36:16 +00:00
1. ClearML Server [self-hosted ](https://github.com/clearml/clearml-server )
2022-07-31 16:36:48 +00:00
or [free tier hosting ](https://app.clear.ml )
2022-11-06 09:53:16 +00:00
2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine:
2022-07-31 16:36:48 +00:00
on-premises / cloud / ...)
2023-07-19 13:51:14 +00:00
3. Create a [job ](https://clear.ml/docs/latest/docs/apps/clearml_task ) or
2025-01-13 16:36:16 +00:00
add [ClearML ](https://github.com/clearml/clearml ) to your code with just 2 lines of code
2022-07-31 16:36:48 +00:00
4. Change the [parameters ](#using-the-clearml-agent ) in the UI & schedule for [execution ](#using-the-clearml-agent ) (or
2022-11-06 09:53:16 +00:00
automate with an [AutoML pipeline ](#automl-and-orchestration-pipelines- ))
2020-12-22 21:00:57 +00:00
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
2019-10-29 11:18:51 +00:00
2020-12-22 21:00:57 +00:00
"All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
2019-10-29 01:34:40 +00:00
2025-01-13 16:36:16 +00:00
**Try ClearML now** [Self Hosted ](https://github.com/clearml/clearml-server )
2022-07-31 16:36:48 +00:00
or [Free tier Hosting ](https://app.clear.ml )
2025-01-13 16:36:16 +00:00
< a href = "https://app.clear.ml" > < img src = "https://github.com/clearml/clearml-agent/blob/master/docs/screenshots.gif?raw=true" width = "100%" > < / a >
2019-10-29 01:34:40 +00:00
2020-12-22 21:00:57 +00:00
### Simple, Flexible Experiment Orchestration
2022-07-31 16:36:48 +00:00
2020-12-22 21:00:57 +00:00
**The ClearML Agent was built to address the DL/ML R& D DevOps needs:**
2019-10-29 01:34:40 +00:00
* Easily add & remove machines from the cluster
* Reuse machines without the need for any dedicated containers or images
2019-10-29 19:21:42 +00:00
* **Combine GPU resources across any cloud and on-prem**
2020-12-22 21:00:57 +00:00
* **No need for yaml / json / template configuration of any kind**
2019-10-29 01:57:15 +00:00
* **User friendly UI**
2019-10-29 01:34:40 +00:00
* Manageable resource allocation that can be used by researchers and engineers
* Flexible and controllable scheduler with priority support
2020-12-22 21:00:57 +00:00
* Automatic instance spinning in the cloud
**Using the ClearML Agent, you can now set up a dynamic cluster with \*epsilon DevOps**
*epsilon - Because we are :triangular_ruler: and nothing is really zero work
### Kubernetes Integration (Optional)
2022-07-31 16:36:48 +00:00
2024-03-11 14:58:28 +00:00
We think Kubernetes is awesome, but it is not a must to get started with remote execution agents and cluster management.
We designed `clearml-agent` so you can run both bare-metal and on top of Kubernetes, in any combination that fits your environment.
2022-02-21 13:59:50 +00:00
2025-01-13 16:36:16 +00:00
You can find the Dockerfiles in the [docker folder ](./docker ) and the helm Chart in https://github.com/clearml/clearml-helm-charts
2022-07-31 16:36:48 +00:00
2024-03-11 14:58:28 +00:00
#### Benefits of integrating existing Kubernetes cluster with ClearML
2022-07-31 16:36:48 +00:00
2024-03-11 14:58:28 +00:00
- ClearML-Agent adds the missing scheduling capabilities to your Kubernetes cluster
- Users do not need to have direct Kubernetes access!
- Easy learning curve with UI and CLI requiring no DevOps knowledge from end users
- Unlike other solutions, ClearML-Agents work in tandem with other customers of your Kubernetes cluster
- Allows for more flexible automation from code, building pipelines and visibility
- A programmatic interface for easy CI/CD workflows, enabling GitOps to trigger jobs inside your cluster
- Seamless integration with the ClearML ML/DL/GenAI experiment manager
2022-07-31 16:36:48 +00:00
- Web UI for customization, scheduling & prioritization of jobs
2024-03-11 14:58:28 +00:00
- **Enterprise Features**: RBAC, vault, multi-tenancy, scheduler, quota management, fractional GPU support
2022-07-31 16:36:48 +00:00
2024-01-25 09:27:56 +00:00
**Run the agent in Kubernetes Glue mode an map ClearML jobs directly to K8s jobs:**
2025-01-13 16:36:16 +00:00
- Use the [ClearML Agent Helm Chart ](https://github.com/clearml/clearml-helm-charts/tree/main/charts/clearml-agent ) to spin an agent pod acting as a controller
- Or run the [clearml-k8s glue ](https://github.com/clearml/clearml-agent/blob/master/examples/k8s_glue_example.py ) on
2024-03-11 14:58:28 +00:00
a Kubernetes cpu node
- The clearml-k8s glue pulls jobs from the ClearML job execution queue and prepares a Kubernetes job (based on provided
2024-01-25 09:27:56 +00:00
yaml template)
2024-03-11 14:58:28 +00:00
- Inside each pod the clearml-agent will install the job (experiment) environment and spin and monitor the
experiment's process, fully visible in the clearml UI
2024-01-25 09:27:56 +00:00
- Benefits: Kubernetes full view of all running jobs in the system
2024-03-11 14:58:28 +00:00
- **Enterprise Features**
- Full scheduler features added on Top of Kubernetes, with quota/over-quota management, priorities and order.
- Fractional GPU support, allowing multiple isolated containers sharing the same GPU with memory/compute limit per container
### SLURM (Optional)
Yes! Slurm integration is available, check the [documentation ](https://clear.ml/docs/latest/docs/clearml_agent/#slurm ) for further details
2020-12-22 21:00:57 +00:00
### Using the ClearML Agent
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
**Full scale HPC with a click of a button**
2022-07-31 16:36:48 +00:00
The ClearML Agent is a job scheduler that listens on job queue(s), pulls jobs, sets the job environments, executes the
job and monitors its progress.
2019-10-29 01:34:40 +00:00
2020-12-22 21:00:57 +00:00
Any 'Draft' experiment can be scheduled for execution by a ClearML agent.
2019-10-29 01:34:40 +00:00
A previously run experiment can be put into 'Draft' state by either of two methods:
2022-07-31 16:36:48 +00:00
* Using the ** 'Reset'** action from the experiment right-click context menu in the ClearML UI - This will clear any
results and artifacts the previous run had created.
2023-07-19 13:51:14 +00:00
* Using the ** 'Clone'** action from the experiment right-click context menu in the ClearML UI - This will create a new
'Draft' experiment with the same configuration as the original experiment.
2022-07-31 16:36:48 +00:00
An experiment is scheduled for execution using the ** 'Enqueue'** action from the experiment right-click context menu in
the ClearML UI and selecting the execution queue.
2019-10-29 03:30:56 +00:00
2019-10-29 19:21:42 +00:00
See [creating an experiment and enqueuing it for execution ](#from-scratch ).
2019-10-29 01:34:40 +00:00
2023-07-19 13:51:14 +00:00
Once an experiment is enqueued, it will be picked up and executed by a ClearML Agent monitoring this queue.
2019-10-29 01:34:40 +00:00
2020-12-22 21:00:57 +00:00
The ClearML UI Workers & Queues page provides ongoing execution information:
2022-07-31 16:36:48 +00:00
- Workers Tab: Monitor you cluster
2019-10-29 01:34:40 +00:00
- Review available resources
- Monitor machines statistics (CPU / GPU / Disk / Network)
2022-07-31 16:36:48 +00:00
- Queues Tab:
2019-10-29 01:34:40 +00:00
- Control the scheduling order of jobs
- Cancel or abort job execution
- Move jobs between execution queues
2020-12-22 21:00:57 +00:00
#### What The ClearML Agent Actually Does
2022-07-31 16:36:48 +00:00
2020-12-22 21:00:57 +00:00
The ClearML Agent executes experiments using the following process:
2022-07-31 16:36:48 +00:00
- Create a new virtual environment (or launch the selected docker image)
- Clone the code into the virtual-environment (or inside the docker)
- Install python packages based on the package requirements listed for the experiment
- Special note for PyTorch: The ClearML Agent will automatically select the torch packages based on the CUDA_VERSION
environment variable of the machine
- Execute the code, while monitoring the process
- Log all stdout/stderr in the ClearML UI, including the cloning and installation process, for easy debugging
- Monitor the execution and allow you to manually abort the job using the ClearML UI (or, in the unfortunate case of a
code crash, catch the error and signal the experiment has failed)
2020-12-22 21:00:57 +00:00
#### System Design & Flow
2025-01-13 16:36:16 +00:00
< img src = "https://github.com/clearml/clearml-agent/blob/master/docs/clearml_architecture.png" width = "100%" alt = "clearml-architecture" >
2020-12-22 21:00:57 +00:00
#### Installing the ClearML Agent
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
pip install clearml-agent
2019-10-29 01:34:40 +00:00
```
2020-12-22 21:00:57 +00:00
#### ClearML Agent Usage Examples
2019-10-29 01:34:40 +00:00
Full Interface and capabilities are available with
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent --help
clearml-agent daemon --help
2019-10-29 01:34:40 +00:00
```
2020-12-22 21:00:57 +00:00
#### Configuring the ClearML Agent
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent init
2019-10-29 01:34:40 +00:00
```
2022-07-31 16:36:48 +00:00
Note: The ClearML Agent uses a cache folder to cache pip packages, apt packages and cloned repositories. The default
2023-07-19 13:51:14 +00:00
ClearML Agent cache folder is `~/.clearml` .
2019-10-29 01:34:40 +00:00
2023-07-19 13:51:14 +00:00
See full details in your configuration file at `~/clearml.conf` .
2019-10-29 01:34:40 +00:00
2023-07-19 13:51:14 +00:00
Note: The **ClearML Agent** extends the **ClearML** configuration file `~/clearml.conf` .
2020-12-22 21:00:57 +00:00
They are designed to share the same configuration file, see example [here ](docs/clearml.conf )
2019-10-29 01:34:40 +00:00
2020-12-22 21:00:57 +00:00
#### Running the ClearML Agent
2019-10-29 01:34:40 +00:00
2023-07-19 13:51:14 +00:00
For debug and experimentation, start the ClearML agent in `foreground` mode, where all the output is printed to screen:
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --queue default --foreground
2019-10-29 01:34:40 +00:00
```
2023-07-19 13:51:14 +00:00
For actual service mode, all the stdout will be stored automatically into a temporary file (no need to pipe).
2020-12-22 21:00:57 +00:00
Notice: with `--detached` flag, the *clearml-agent* will be running in the background
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --detached --queue default
2019-10-29 01:34:40 +00:00
```
2022-07-31 16:36:48 +00:00
GPU allocation is controlled via the standard OS environment `NVIDIA_VISIBLE_DEVICES` or `--gpus` flag (or disabled
with `--cpu-only` ).
2019-10-29 16:06:35 +00:00
2023-07-19 13:51:14 +00:00
If no flag is set, and `NVIDIA_VISIBLE_DEVICES` variable doesn't exist, all GPUs will be allocated for
the `clearml-agent` . < br >
2022-09-01 14:18:48 +00:00
If `--cpu-only` flag is set, or `NVIDIA_VISIBLE_DEVICES="none"` , no gpu will be allocated for
2023-07-19 13:51:14 +00:00
the `clearml-agent` .
2019-10-29 16:06:35 +00:00
2023-07-19 13:51:14 +00:00
Example: spin two agents, one per GPU on the same machine:
Notice: with `--detached` flag, the *clearml-agent* will run in the background
2022-07-31 16:36:48 +00:00
2019-10-29 16:06:35 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --detached --gpus 0 --queue default
clearml-agent daemon --detached --gpus 1 --queue default
2019-10-29 16:06:35 +00:00
```
2023-07-19 13:51:14 +00:00
Example: spin two agents, pulling from dedicated `dual_gpu` queue, two GPUs per agent
2022-07-31 16:36:48 +00:00
2019-10-29 16:06:35 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --detached --gpus 0,1 --queue dual_gpu
clearml-agent daemon --detached --gpus 2,3 --queue dual_gpu
2019-10-29 16:06:35 +00:00
```
2020-12-22 21:00:57 +00:00
##### Starting the ClearML Agent in docker mode
2019-10-29 01:34:40 +00:00
2020-12-22 21:00:57 +00:00
For debug and experimentation, start the ClearML agent in `foreground` mode, where all the output is printed to screen
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --queue default --docker --foreground
2019-10-29 01:34:40 +00:00
```
2023-07-19 13:51:14 +00:00
For actual service mode, all the stdout will be stored automatically into a file (no need to pipe).
Notice: with `--detached` flag, the *clearml-agent* will run in the background
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --detached --queue default --docker
2019-10-29 01:34:40 +00:00
```
2023-08-24 16:03:24 +00:00
Example: spin two agents, one per gpu on the same machine, with default `nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04`
2022-07-31 16:36:48 +00:00
docker:
2019-10-29 16:06:35 +00:00
```bash
2023-08-24 16:03:24 +00:00
clearml-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04
clearml-agent daemon --detached --gpus 1 --queue default --docker nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04
2019-10-29 16:06:35 +00:00
```
2023-07-19 13:51:14 +00:00
Example: spin two agents, pulling from dedicated `dual_gpu` queue, two GPUs per agent, with default
2023-08-24 16:03:24 +00:00
`nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04` docker:
2022-07-31 16:36:48 +00:00
2019-10-29 16:06:35 +00:00
```bash
2023-08-24 16:03:24 +00:00
clearml-agent daemon --detached --gpus 0,1 --queue dual_gpu --docker nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04
clearml-agent daemon --detached --gpus 2,3 --queue dual_gpu --docker nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04
2019-10-29 16:06:35 +00:00
```
2020-12-22 21:00:57 +00:00
##### Starting the ClearML Agent - Priority Queues
2019-10-29 01:34:40 +00:00
2019-10-29 03:30:56 +00:00
Priority Queues are also supported, example use case:
2019-10-29 01:34:40 +00:00
2023-07-19 13:51:14 +00:00
High priority queue: `important_jobs` , low priority queue: `default`
2022-07-31 16:36:48 +00:00
2019-10-29 01:34:40 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --queue important_jobs default
2019-10-29 01:34:40 +00:00
```
2023-07-19 13:51:14 +00:00
The **ClearML Agent** will first try to pull jobs from the `important_jobs` queue, and only if it is empty, the agent
will try to pull from the `default` queue.
2022-07-31 16:36:48 +00:00
2023-07-19 13:51:14 +00:00
Adding queues, managing job order within a queue, and moving jobs between queues, is available using the Web UI, see
2022-07-31 16:36:48 +00:00
example on our [free server ](https://app.clear.ml/workers-and-queues/queues )
2019-10-30 11:15:32 +00:00
2020-12-22 21:00:57 +00:00
##### Stopping the ClearML Agent
2020-11-19 10:36:58 +00:00
2022-07-31 16:36:48 +00:00
To stop a **ClearML Agent** running in the background, run the same command line used to start the agent with `--stop`
appended. For example, to stop the first of the above shown same machine, single gpu agents:
2020-11-19 10:36:58 +00:00
```bash
2023-08-24 16:03:24 +00:00
clearml-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda:11.0.3-cudnn8-runtime-ubuntu20.04 --stop
2020-11-19 10:36:58 +00:00
```
2020-12-22 21:00:57 +00:00
### How do I create an experiment on the ClearML Server? <a name="from-scratch"></a>
2022-07-31 16:36:48 +00:00
2025-01-13 16:36:16 +00:00
* Integrate [ClearML ](https://github.com/clearml/clearml ) with your code
2019-10-29 01:34:40 +00:00
* Execute the code on your machine (Manually / PyCharm / Jupyter Notebook)
2020-12-22 21:00:57 +00:00
* As your code is running, **ClearML** creates an experiment logging all the necessary execution information:
2022-07-31 16:36:48 +00:00
- Git repository link and commit ID (or an entire jupyter notebook)
- Git diff (we’ re not saying you never commit and push, but still...)
- Python packages used by your code (including specific versions used)
2023-07-19 13:51:14 +00:00
- Hyperparameters
- Input artifacts
2019-10-29 03:30:56 +00:00
2019-10-29 01:34:40 +00:00
You now have a 'template' of your experiment with everything required for automated execution
2019-10-29 03:30:56 +00:00
2023-07-19 13:51:14 +00:00
* In the ClearML UI, right-click on the experiment and select 'clone'. A copy of your experiment will be created.
2019-10-29 01:34:40 +00:00
* You now have a new draft experiment cloned from your original experiment, feel free to edit it
2023-07-19 13:51:14 +00:00
- Change the hyperparameters
2022-07-31 16:36:48 +00:00
- Switch to the latest code base of the repository
- Update package versions
- Select a specific docker image to run in (see docker execution mode section)
- Or simply change nothing to run the same experiment again...
2023-07-19 13:51:14 +00:00
* Schedule the newly created experiment for execution: right-click the experiment and select 'enqueue'
2019-10-29 16:06:35 +00:00
2020-12-22 21:00:57 +00:00
### ClearML-Agent Services Mode <a name="services"></a>
2020-06-01 21:58:52 +00:00
2022-07-31 16:36:48 +00:00
ClearML-Agent Services is a special mode of ClearML-Agent that provides the ability to launch long-lasting jobs that
previously had to be executed on local / dedicated machines. It allows a single agent to launch multiple dockers (Tasks)
2023-07-19 13:51:14 +00:00
for different use cases:
* Auto-scaler service (spinning instances when the need arises and the budget allows)
* Controllers (Implementing pipelines and more sophisticated DevOps logic)
* Optimizer (such as Hyperparameter Optimization or sweeping)
* Application (such as interactive Bokeh apps for increased data transparency)
2020-06-01 21:58:52 +00:00
2022-07-31 16:36:48 +00:00
ClearML-Agent Services mode will spin **any** task enqueued into the specified queue. Every task launched by
ClearML-Agent Services will be registered as a new node in the system, providing tracking and transparency capabilities.
2023-07-19 13:51:14 +00:00
Currently, clearml-agent in services-mode supports CPU only configuration. ClearML-Agent services mode can be launched
2022-07-31 16:36:48 +00:00
alongside GPU agents.
2020-06-01 21:58:52 +00:00
```bash
2020-12-22 21:00:57 +00:00
clearml-agent daemon --services-mode --detached --queue services --create-queue --docker ubuntu:18.04 --cpu-only
2020-06-01 21:58:52 +00:00
```
2020-12-22 21:00:57 +00:00
**Note**: It is the user's responsibility to make sure the proper tasks are pushed into the specified queue.
2020-06-01 21:58:52 +00:00
2022-11-06 09:53:16 +00:00
### AutoML and Orchestration Pipelines <a name="automl-pipes"></a>
2019-10-29 16:06:35 +00:00
2022-11-06 09:53:16 +00:00
The ClearML Agent can also be used to implement AutoML orchestration and Experiment Pipelines in conjunction with the
2022-07-31 16:36:48 +00:00
ClearML package.
2022-11-06 09:53:16 +00:00
Sample AutoML & Orchestration examples can be found in the
2025-01-13 16:36:16 +00:00
ClearML [example/automation ](https://github.com/clearml/clearml/tree/master/examples/automation ) folder.
2019-10-29 16:06:35 +00:00
2023-07-19 13:51:14 +00:00
AutoML examples:
2022-07-31 16:36:48 +00:00
2025-01-13 16:36:16 +00:00
- [Toy Keras training experiment ](https://github.com/clearml/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py )
2019-10-29 16:06:35 +00:00
- In order to create an experiment-template in the system, this code must be executed once manually
2025-01-13 16:36:16 +00:00
- [Random Search over the above Keras experiment-template ](https://github.com/clearml/clearml/blob/master/examples/automation/manual_random_param_search_example.py )
2023-07-19 13:51:14 +00:00
- This example will create multiple copies of the Keras experiment-template, with different hyperparameter
2022-07-31 16:36:48 +00:00
combinations
2019-10-29 16:06:35 +00:00
2023-07-19 13:51:14 +00:00
Experiment Pipeline examples:
2022-07-31 16:36:48 +00:00
2025-01-13 16:36:16 +00:00
- [First step experiment ](https://github.com/clearml/clearml/blob/master/examples/automation/task_piping_example.py )
2022-11-06 09:53:16 +00:00
- This example will "process data", and once done, will launch a copy of the 'second step' experiment-template
2025-01-13 16:36:16 +00:00
- [Second step experiment ](https://github.com/clearml/clearml/blob/master/examples/automation/toy_base_task.py )
2022-11-06 09:53:16 +00:00
- In order to create an experiment-template in the system, this code must be executed once manually
2020-05-09 17:12:53 +00:00
2020-12-22 21:00:57 +00:00
### License
2020-05-09 17:12:53 +00:00
Apache License, Version 2.0 (see the [LICENSE ](https://www.apache.org/licenses/LICENSE-2.0.html ) for more information)