mirror of
https://github.com/clearml/clearml-agent
synced 2025-01-30 16:46:54 +00:00
Update github repo link
This commit is contained in:
parent
e535390815
commit
9fa8d72640
2
LICENSE
2
LICENSE
@ -186,7 +186,7 @@
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright 2019 allegro.ai
|
||||
Copyright 2025 ClearML Inc
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
34
README.md
34
README.md
@ -1,15 +1,15 @@
|
||||
<div align="center">
|
||||
|
||||
<img src="https://github.com/allegroai/clearml-agent/blob/master/docs/clearml_agent_logo.png?raw=true" width="250px">
|
||||
<img src="https://github.com/clearml/clearml-agent/blob/master/docs/clearml_agent_logo.png?raw=true" width="250px">
|
||||
|
||||
**ClearML Agent - MLOps/LLMOps made easy
|
||||
MLOps/LLMOps scheduler & orchestration solution supporting Linux, macOS and Windows**
|
||||
|
||||
[![GitHub license](https://img.shields.io/github/license/allegroai/clearml-agent.svg)](https://img.shields.io/github/license/allegroai/clearml-agent.svg)
|
||||
[![GitHub license](https://img.shields.io/github/license/clearml/clearml-agent.svg)](https://img.shields.io/github/license/clearml/clearml-agent.svg)
|
||||
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml-agent.svg)](https://img.shields.io/pypi/pyversions/clearml-agent.svg)
|
||||
[![PyPI version shields.io](https://img.shields.io/pypi/v/clearml-agent.svg)](https://img.shields.io/pypi/v/clearml-agent.svg)
|
||||
[![PyPI Downloads](https://pepy.tech/badge/clearml-agent/month)](https://pypi.org/project/clearml-agent/)
|
||||
[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/allegroai)](https://artifacthub.io/packages/search?repo=allegroai)
|
||||
[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/clearml)](https://artifacthub.io/packages/search?repo=clearml)
|
||||
|
||||
`🌟 ClearML is open-source - Leave a star to support the project! 🌟`
|
||||
|
||||
@ -33,21 +33,21 @@ It is a zero configuration fire-and-forget execution agent, providing a full ML/
|
||||
|
||||
**Full Automation in 5 steps**
|
||||
|
||||
1. ClearML Server [self-hosted](https://github.com/allegroai/clearml-server)
|
||||
1. ClearML Server [self-hosted](https://github.com/clearml/clearml-server)
|
||||
or [free tier hosting](https://app.clear.ml)
|
||||
2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine:
|
||||
on-premises / cloud / ...)
|
||||
3. Create a [job](https://clear.ml/docs/latest/docs/apps/clearml_task) or
|
||||
add [ClearML](https://github.com/allegroai/clearml) to your code with just 2 lines of code
|
||||
add [ClearML](https://github.com/clearml/clearml) to your code with just 2 lines of code
|
||||
4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or
|
||||
automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-))
|
||||
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
|
||||
|
||||
"All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
|
||||
|
||||
**Try ClearML now** [Self Hosted](https://github.com/allegroai/clearml-server)
|
||||
**Try ClearML now** [Self Hosted](https://github.com/clearml/clearml-server)
|
||||
or [Free tier Hosting](https://app.clear.ml)
|
||||
<a href="https://app.clear.ml"><img src="https://github.com/allegroai/clearml-agent/blob/master/docs/screenshots.gif?raw=true" width="100%"></a>
|
||||
<a href="https://app.clear.ml"><img src="https://github.com/clearml/clearml-agent/blob/master/docs/screenshots.gif?raw=true" width="100%"></a>
|
||||
|
||||
### Simple, Flexible Experiment Orchestration
|
||||
|
||||
@ -71,7 +71,7 @@ or [Free tier Hosting](https://app.clear.ml)
|
||||
We think Kubernetes is awesome, but it is not a must to get started with remote execution agents and cluster management.
|
||||
We designed `clearml-agent` so you can run both bare-metal and on top of Kubernetes, in any combination that fits your environment.
|
||||
|
||||
You can find the Dockerfiles in the [docker folder](./docker) and the helm Chart in https://github.com/allegroai/clearml-helm-charts
|
||||
You can find the Dockerfiles in the [docker folder](./docker) and the helm Chart in https://github.com/clearml/clearml-helm-charts
|
||||
|
||||
#### Benefits of integrating existing Kubernetes cluster with ClearML
|
||||
|
||||
@ -86,8 +86,8 @@ You can find the Dockerfiles in the [docker folder](./docker) and the helm Chart
|
||||
- **Enterprise Features**: RBAC, vault, multi-tenancy, scheduler, quota management, fractional GPU support
|
||||
|
||||
**Run the agent in Kubernetes Glue mode an map ClearML jobs directly to K8s jobs:**
|
||||
- Use the [ClearML Agent Helm Chart](https://github.com/allegroai/clearml-helm-charts/tree/main/charts/clearml-agent) to spin an agent pod acting as a controller
|
||||
- Or run the [clearml-k8s glue](https://github.com/allegroai/clearml-agent/blob/master/examples/k8s_glue_example.py) on
|
||||
- Use the [ClearML Agent Helm Chart](https://github.com/clearml/clearml-helm-charts/tree/main/charts/clearml-agent) to spin an agent pod acting as a controller
|
||||
- Or run the [clearml-k8s glue](https://github.com/clearml/clearml-agent/blob/master/examples/k8s_glue_example.py) on
|
||||
a Kubernetes cpu node
|
||||
- The clearml-k8s glue pulls jobs from the ClearML job execution queue and prepares a Kubernetes job (based on provided
|
||||
yaml template)
|
||||
@ -151,7 +151,7 @@ The ClearML Agent executes experiments using the following process:
|
||||
|
||||
#### System Design & Flow
|
||||
|
||||
<img src="https://github.com/allegroai/clearml-agent/blob/master/docs/clearml_architecture.png" width="100%" alt="clearml-architecture">
|
||||
<img src="https://github.com/clearml/clearml-agent/blob/master/docs/clearml_architecture.png" width="100%" alt="clearml-architecture">
|
||||
|
||||
#### Installing the ClearML Agent
|
||||
|
||||
@ -279,7 +279,7 @@ clearml-agent daemon --detached --gpus 0 --queue default --docker nvidia/cuda:11
|
||||
|
||||
### How do I create an experiment on the ClearML Server? <a name="from-scratch"></a>
|
||||
|
||||
* Integrate [ClearML](https://github.com/allegroai/clearml) with your code
|
||||
* Integrate [ClearML](https://github.com/clearml/clearml) with your code
|
||||
* Execute the code on your machine (Manually / PyCharm / Jupyter Notebook)
|
||||
* As your code is running, **ClearML** creates an experiment logging all the necessary execution information:
|
||||
- Git repository link and commit ID (or an entire jupyter notebook)
|
||||
@ -326,21 +326,21 @@ The ClearML Agent can also be used to implement AutoML orchestration and Experim
|
||||
ClearML package.
|
||||
|
||||
Sample AutoML & Orchestration examples can be found in the
|
||||
ClearML [example/automation](https://github.com/allegroai/clearml/tree/master/examples/automation) folder.
|
||||
ClearML [example/automation](https://github.com/clearml/clearml/tree/master/examples/automation) folder.
|
||||
|
||||
AutoML examples:
|
||||
|
||||
- [Toy Keras training experiment](https://github.com/allegroai/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
|
||||
- [Toy Keras training experiment](https://github.com/clearml/clearml/blob/master/examples/optimization/hyper-parameter-optimization/base_template_keras_simple.py)
|
||||
- In order to create an experiment-template in the system, this code must be executed once manually
|
||||
- [Random Search over the above Keras experiment-template](https://github.com/allegroai/clearml/blob/master/examples/automation/manual_random_param_search_example.py)
|
||||
- [Random Search over the above Keras experiment-template](https://github.com/clearml/clearml/blob/master/examples/automation/manual_random_param_search_example.py)
|
||||
- This example will create multiple copies of the Keras experiment-template, with different hyperparameter
|
||||
combinations
|
||||
|
||||
Experiment Pipeline examples:
|
||||
|
||||
- [First step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/task_piping_example.py)
|
||||
- [First step experiment](https://github.com/clearml/clearml/blob/master/examples/automation/task_piping_example.py)
|
||||
- This example will "process data", and once done, will launch a copy of the 'second step' experiment-template
|
||||
- [Second step experiment](https://github.com/allegroai/clearml/blob/master/examples/automation/toy_base_task.py)
|
||||
- [Second step experiment](https://github.com/clearml/clearml/blob/master/examples/automation/toy_base_task.py)
|
||||
- In order to create an experiment-template in the system, this code must be executed once manually
|
||||
|
||||
### License
|
||||
|
4
setup.py
4
setup.py
@ -1,7 +1,7 @@
|
||||
"""
|
||||
ClearML Inc.
|
||||
CLEARML-AGENT DevOps for machine/deep learning
|
||||
https://github.com/allegroai/clearml-agent
|
||||
https://github.com/clearml/clearml-agent
|
||||
"""
|
||||
|
||||
import os.path
|
||||
@ -39,7 +39,7 @@ setup(
|
||||
long_description=long_description,
|
||||
long_description_content_type='text/markdown',
|
||||
# The project's main homepage.
|
||||
url='https://github.com/allegroai/clearml-agent',
|
||||
url='https://github.com/clearml/clearml-agent',
|
||||
author='clearml',
|
||||
author_email='clearml@clearml.ai',
|
||||
license='Apache License 2.0',
|
||||
|
Loading…
Reference in New Issue
Block a user