**ClearML Agent - MLOps/LLMOps made easy
MLOps/LLMOps scheduler & orchestration solution supporting Linux, macOS and Windows**
[![GitHub license](https://img.shields.io/github/license/clearml/clearml-agent.svg)](https://img.shields.io/github/license/clearml/clearml-agent.svg)
[![PyPI pyversions](https://img.shields.io/pypi/pyversions/clearml-agent.svg)](https://img.shields.io/pypi/pyversions/clearml-agent.svg)
[![PyPI version shields.io](https://img.shields.io/pypi/v/clearml-agent.svg)](https://img.shields.io/pypi/v/clearml-agent.svg)
[![PyPI Downloads](https://pepy.tech/badge/clearml-agent/month)](https://pypi.org/project/clearml-agent/)
[![Artifact Hub](https://img.shields.io/endpoint?url=https://artifacthub.io/badge/repository/clearml)](https://artifacthub.io/packages/search?repo=clearml)
`π ClearML is open-source - Leave a star to support the project! π`
---
### ClearML-Agent
#### *Formerly known as Trains Agent*
* Run jobs (experiments) on any local or cloud based resource
* Implement optimized resource utilization policies
* Deploy execution environments with either virtualenv or fully docker containerized with zero effort
* Launch-and-Forget service containers
* [Cloud autoscaling](https://clear.ml/docs/latest/docs/guides/services/aws_autoscaler)
* [Customizable cleanup](https://clear.ml/docs/latest/docs/guides/services/cleanup_service)
* Advanced [pipeline building and execution](https://clear.ml/docs/latest/docs/guides/frameworks/pytorch/notebooks/table/tabular_training_pipeline)
It is a zero configuration fire-and-forget execution agent, providing a full ML/DL cluster solution.
**Full Automation in 5 steps**
1. ClearML Server [self-hosted](https://github.com/clearml/clearml-server)
or [free tier hosting](https://app.clear.ml)
2. `pip install clearml-agent` ([install](#installing-the-clearml-agent) the ClearML Agent on any GPU machine:
on-premises / cloud / ...)
3. Create a [job](https://clear.ml/docs/latest/docs/apps/clearml_task) or
add [ClearML](https://github.com/clearml/clearml) to your code with just 2 lines of code
4. Change the [parameters](#using-the-clearml-agent) in the UI & schedule for [execution](#using-the-clearml-agent) (or
automate with an [AutoML pipeline](#automl-and-orchestration-pipelines-))
5. :chart_with_downwards_trend: :chart_with_upwards_trend: :eyes: :beer:
"All the Deep/Machine-Learning DevOps your research needs, and then some... Because ain't nobody got time for that"
**Try ClearML now** [Self Hosted](https://github.com/clearml/clearml-server)
or [Free tier Hosting](https://app.clear.ml)