Merge branch 'dev' of https://github.com/open-webui/open-webui into dev
Some checks are pending
Deploy to HuggingFace Spaces / check-secret (push) Waiting to run
Deploy to HuggingFace Spaces / deploy (push) Blocked by required conditions
Create and publish Docker images with specific build args / build-main-image (linux/amd64) (push) Waiting to run
Create and publish Docker images with specific build args / build-main-image (linux/arm64) (push) Waiting to run
Create and publish Docker images with specific build args / build-cuda-image (linux/amd64) (push) Waiting to run
Create and publish Docker images with specific build args / build-cuda-image (linux/arm64) (push) Waiting to run
Create and publish Docker images with specific build args / build-ollama-image (linux/amd64) (push) Waiting to run
Create and publish Docker images with specific build args / build-ollama-image (linux/arm64) (push) Waiting to run
Create and publish Docker images with specific build args / merge-main-images (push) Blocked by required conditions
Create and publish Docker images with specific build args / merge-cuda-images (push) Blocked by required conditions
Create and publish Docker images with specific build args / merge-ollama-images (push) Blocked by required conditions
Python CI / Format Backend (3.11) (push) Waiting to run
Frontend Build / Format & Build Frontend (push) Waiting to run
Frontend Build / Frontend Unit Tests (push) Waiting to run
Integration Test / Run Cypress Integration Tests (push) Waiting to run
Integration Test / Run Migration Tests (push) Waiting to run

This commit is contained in:
Timothy J. Baek 2024-11-04 14:25:41 -08:00
commit 5d3da6dcc8
5 changed files with 165 additions and 0 deletions

View File

@ -8,6 +8,10 @@ elif VECTOR_DB == "qdrant":
from open_webui.apps.retrieval.vector.dbs.qdrant import QdrantClient
VECTOR_DB_CLIENT = QdrantClient()
elif VECTOR_DB == "opensearch":
from open_webui.apps.retrieval.vector.dbs.opensearch import OpenSearchClient
VECTOR_DB_CLIENT = OpenSearchClient()
else:
from open_webui.apps.retrieval.vector.dbs.chroma import ChromaClient

View File

@ -0,0 +1,152 @@
from opensearchpy import OpenSearch
from typing import Optional
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
from open_webui.config import (
OPENSEARCH_URI,
OPENSEARCH_SSL,
OPENSEARCH_CERT_VERIFY,
OPENSEARCH_USERNAME,
OPENSEARCH_PASSWORD
)
class OpenSearchClient:
def __init__(self):
self.index_prefix = "open_webui"
self.client = OpenSearch(
hosts=[OPENSEARCH_URI],
use_ssl=OPENSEARCH_SSL,
verify_certs=OPENSEARCH_CERT_VERIFY,
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
)
def _result_to_get_result(self, result) -> GetResult:
ids = []
documents = []
metadatas = []
for hit in result['hits']['hits']:
ids.append(hit['_id'])
documents.append(hit['_source'].get("text"))
metadatas.append(hit['_source'].get("metadata"))
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
def _result_to_search_result(self, result) -> SearchResult:
ids = []
distances = []
documents = []
metadatas = []
for hit in result['hits']['hits']:
ids.append(hit['_id'])
distances.append(hit['_score'])
documents.append(hit['_source'].get("text"))
metadatas.append(hit['_source'].get("metadata"))
return SearchResult(ids=ids, distances=distances, documents=documents, metadatas=metadatas)
def _create_index(self, index_name: str, dimension: int):
body = {
"mappings": {
"properties": {
"id": {"type": "keyword"},
"vector": {
"type": "dense_vector",
"dims": dimension, # Adjust based on your vector dimensions
"index": true,
"similarity": "faiss",
"method": {
"name": "hnsw",
"space_type": "ip", # Use inner product to approximate cosine similarity
"engine": "faiss",
"ef_construction": 128,
"m": 16
}
},
"text": {"type": "text"},
"metadata": {"type": "object"}
}
}
}
self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
def _create_batches(self, items: list[VectorItem], batch_size=100):
for i in range(0, len(items), batch_size):
yield items[i:i + batch_size]
def has_collection(self, index_name: str) -> bool:
# has_collection here means has index.
# We are simply adapting to the norms of the other DBs.
return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
def delete_colleciton(self, index_name: str):
# delete_collection here means delete index.
# We are simply adapting to the norms of the other DBs.
self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
def search(self, index_name: str, vectors: list[list[float]], limit: int) -> Optional[SearchResult]:
query = {
"size": limit,
"_source": ["text", "metadata"],
"query": {
"script_score": {
"query": {"match_all": {}},
"script": {
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
"params": {"vector": vectors[0]} # Assuming single query vector
}
}
}
}
result = self.client.search(
index=f"{self.index_prefix}_{index_name}",
body=query
)
return self._result_to_search_result(result)
def get_or_create_index(self, index_name: str, dimension: int):
if not self.has_index(index_name):
self._create_index(index_name, dimension)
def get(self, index_name: str) -> Optional[GetResult]:
query = {
"query": {"match_all": {}},
"_source": ["text", "metadata"]
}
result = self.client.search(index=f"{self.index_prefix}_{index_name}", body=query)
return self._result_to_get_result(result)
def insert(self, index_name: str, items: list[VectorItem]):
if not self.has_index(index_name):
self._create_index(index_name, dimension=len(items[0]["vector"]))
for batch in self._create_batches(items):
actions = [
{"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
for item in batch
]
self.client.bulk(actions)
def upsert(self, index_name: str, items: list[VectorItem]):
if not self.has_index(index_name):
self._create_index(index_name, dimension=len(items[0]["vector"]))
for batch in self._create_batches(items):
actions = [
{"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
for item in batch
]
self.client.bulk(actions)
def delete(self, index_name: str, ids: list[str]):
actions = [{"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} for id in ids]
self.client.bulk(body=actions)
def reset(self):
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
for index in indices:
self.client.indices.delete(index=index)

View File

@ -957,6 +957,13 @@ MILVUS_URI = os.environ.get("MILVUS_URI", f"{DATA_DIR}/vector_db/milvus.db")
# Qdrant
QDRANT_URI = os.environ.get("QDRANT_URI", None)
# OpenSearch
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
OPENSEARCH_SSL = os.environ.get("OPENSEARCH_SSL", True)
OPENSEARCH_CERT_VERIFY = os.environ.get("OPENSEARCH_CERT_VERIFY", False)
OPENSEARCH_USERNAME = os.environ.get("OPENSEARCH_USERNAME", None)
OPENSEARCH_PASSWORD = os.environ.get("OPENSEARCH_PASSWORD", None)
####################################
# Information Retrieval (RAG)
####################################

View File

@ -43,6 +43,7 @@ fake-useragent==1.5.1
chromadb==0.5.15
pymilvus==2.4.9
qdrant-client~=1.12.0
opensearch-py==2.7.1
sentence-transformers==3.2.0
colbert-ai==0.2.21

View File

@ -49,6 +49,7 @@ dependencies = [
"fake-useragent==1.5.1",
"chromadb==0.5.9",
"pymilvus==2.4.7",
"opensearch-py==2.7.1",
"sentence-transformers==3.2.0",
"colbert-ai==0.2.21",