mirror of
https://github.com/open-webui/open-webui
synced 2024-11-21 23:57:51 +00:00
Merge pull request #6598 from dtaivpp/main
feat: OpenSearch vector db support
This commit is contained in:
commit
6c1d0a8e39
@ -8,6 +8,10 @@ elif VECTOR_DB == "qdrant":
|
||||
from open_webui.apps.retrieval.vector.dbs.qdrant import QdrantClient
|
||||
|
||||
VECTOR_DB_CLIENT = QdrantClient()
|
||||
elif VECTOR_DB == "opensearch":
|
||||
from open_webui.apps.retrieval.vector.dbs.opensearch import OpenSearchClient
|
||||
|
||||
VECTOR_DB_CLIENT = OpenSearchClient()
|
||||
else:
|
||||
from open_webui.apps.retrieval.vector.dbs.chroma import ChromaClient
|
||||
|
||||
|
152
backend/open_webui/apps/retrieval/vector/dbs/opensearch.py
Normal file
152
backend/open_webui/apps/retrieval/vector/dbs/opensearch.py
Normal file
@ -0,0 +1,152 @@
|
||||
from opensearchpy import OpenSearch
|
||||
from typing import Optional
|
||||
|
||||
from open_webui.apps.rag.vector.main import VectorItem, SearchResult, GetResult
|
||||
from open_webui.config import (
|
||||
OPENSEARCH_URI,
|
||||
OPENSEARCH_SSL,
|
||||
OPENSEARCH_CERT_VERIFY,
|
||||
OPENSEARCH_USERNAME,
|
||||
OPENSEARCH_PASSWORD
|
||||
)
|
||||
|
||||
class OpenSearchClient:
|
||||
def __init__(self):
|
||||
self.index_prefix = "open_webui"
|
||||
self.client = OpenSearch(
|
||||
hosts=[OPENSEARCH_URI],
|
||||
use_ssl=OPENSEARCH_SSL,
|
||||
verify_certs=OPENSEARCH_CERT_VERIFY,
|
||||
http_auth=(OPENSEARCH_USERNAME, OPENSEARCH_PASSWORD),
|
||||
)
|
||||
|
||||
def _result_to_get_result(self, result) -> GetResult:
|
||||
ids = []
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
for hit in result['hits']['hits']:
|
||||
ids.append(hit['_id'])
|
||||
documents.append(hit['_source'].get("text"))
|
||||
metadatas.append(hit['_source'].get("metadata"))
|
||||
|
||||
return GetResult(ids=ids, documents=documents, metadatas=metadatas)
|
||||
|
||||
def _result_to_search_result(self, result) -> SearchResult:
|
||||
ids = []
|
||||
distances = []
|
||||
documents = []
|
||||
metadatas = []
|
||||
|
||||
for hit in result['hits']['hits']:
|
||||
ids.append(hit['_id'])
|
||||
distances.append(hit['_score'])
|
||||
documents.append(hit['_source'].get("text"))
|
||||
metadatas.append(hit['_source'].get("metadata"))
|
||||
|
||||
return SearchResult(ids=ids, distances=distances, documents=documents, metadatas=metadatas)
|
||||
|
||||
def _create_index(self, index_name: str, dimension: int):
|
||||
body = {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"id": {"type": "keyword"},
|
||||
"vector": {
|
||||
"type": "dense_vector",
|
||||
"dims": dimension, # Adjust based on your vector dimensions
|
||||
"index": true,
|
||||
"similarity": "faiss",
|
||||
"method": {
|
||||
"name": "hnsw",
|
||||
"space_type": "ip", # Use inner product to approximate cosine similarity
|
||||
"engine": "faiss",
|
||||
"ef_construction": 128,
|
||||
"m": 16
|
||||
}
|
||||
},
|
||||
"text": {"type": "text"},
|
||||
"metadata": {"type": "object"}
|
||||
}
|
||||
}
|
||||
}
|
||||
self.client.indices.create(index=f"{self.index_prefix}_{index_name}", body=body)
|
||||
|
||||
def _create_batches(self, items: list[VectorItem], batch_size=100):
|
||||
for i in range(0, len(items), batch_size):
|
||||
yield items[i:i + batch_size]
|
||||
|
||||
def has_collection(self, index_name: str) -> bool:
|
||||
# has_collection here means has index.
|
||||
# We are simply adapting to the norms of the other DBs.
|
||||
return self.client.indices.exists(index=f"{self.index_prefix}_{index_name}")
|
||||
|
||||
def delete_colleciton(self, index_name: str):
|
||||
# delete_collection here means delete index.
|
||||
# We are simply adapting to the norms of the other DBs.
|
||||
self.client.indices.delete(index=f"{self.index_prefix}_{index_name}")
|
||||
|
||||
def search(self, index_name: str, vectors: list[list[float]], limit: int) -> Optional[SearchResult]:
|
||||
query = {
|
||||
"size": limit,
|
||||
"_source": ["text", "metadata"],
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {"match_all": {}},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.vector, 'vector') + 1.0",
|
||||
"params": {"vector": vectors[0]} # Assuming single query vector
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result = self.client.search(
|
||||
index=f"{self.index_prefix}_{index_name}",
|
||||
body=query
|
||||
)
|
||||
|
||||
return self._result_to_search_result(result)
|
||||
|
||||
def get_or_create_index(self, index_name: str, dimension: int):
|
||||
if not self.has_index(index_name):
|
||||
self._create_index(index_name, dimension)
|
||||
|
||||
def get(self, index_name: str) -> Optional[GetResult]:
|
||||
query = {
|
||||
"query": {"match_all": {}},
|
||||
"_source": ["text", "metadata"]
|
||||
}
|
||||
|
||||
result = self.client.search(index=f"{self.index_prefix}_{index_name}", body=query)
|
||||
return self._result_to_get_result(result)
|
||||
|
||||
def insert(self, index_name: str, items: list[VectorItem]):
|
||||
if not self.has_index(index_name):
|
||||
self._create_index(index_name, dimension=len(items[0]["vector"]))
|
||||
|
||||
for batch in self._create_batches(items):
|
||||
actions = [
|
||||
{"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
|
||||
for item in batch
|
||||
]
|
||||
self.client.bulk(actions)
|
||||
|
||||
def upsert(self, index_name: str, items: list[VectorItem]):
|
||||
if not self.has_index(index_name):
|
||||
self._create_index(index_name, dimension=len(items[0]["vector"]))
|
||||
|
||||
for batch in self._create_batches(items):
|
||||
actions = [
|
||||
{"index": {"_id": item["id"], "_source": {"vector": item["vector"], "text": item["text"], "metadata": item["metadata"]}}}
|
||||
for item in batch
|
||||
]
|
||||
self.client.bulk(actions)
|
||||
|
||||
def delete(self, index_name: str, ids: list[str]):
|
||||
actions = [{"delete": {"_index": f"{self.index_prefix}_{index_name}", "_id": id}} for id in ids]
|
||||
self.client.bulk(body=actions)
|
||||
|
||||
def reset(self):
|
||||
indices = self.client.indices.get(index=f"{self.index_prefix}_*")
|
||||
for index in indices:
|
||||
self.client.indices.delete(index=index)
|
@ -957,6 +957,13 @@ MILVUS_URI = os.environ.get("MILVUS_URI", f"{DATA_DIR}/vector_db/milvus.db")
|
||||
# Qdrant
|
||||
QDRANT_URI = os.environ.get("QDRANT_URI", None)
|
||||
|
||||
# OpenSearch
|
||||
OPENSEARCH_URI = os.environ.get("OPENSEARCH_URI", "https://localhost:9200")
|
||||
OPENSEARCH_SSL = os.environ.get("OPENSEARCH_SSL", True)
|
||||
OPENSEARCH_CERT_VERIFY = os.environ.get("OPENSEARCH_CERT_VERIFY", False)
|
||||
OPENSEARCH_USERNAME = os.environ.get("OPENSEARCH_USERNAME", None)
|
||||
OPENSEARCH_PASSWORD = os.environ.get("OPENSEARCH_PASSWORD", None)
|
||||
|
||||
####################################
|
||||
# Information Retrieval (RAG)
|
||||
####################################
|
||||
|
@ -43,6 +43,7 @@ fake-useragent==1.5.1
|
||||
chromadb==0.5.15
|
||||
pymilvus==2.4.9
|
||||
qdrant-client~=1.12.0
|
||||
opensearch-py==2.7.1
|
||||
|
||||
sentence-transformers==3.2.0
|
||||
colbert-ai==0.2.21
|
||||
|
@ -49,6 +49,7 @@ dependencies = [
|
||||
"fake-useragent==1.5.1",
|
||||
"chromadb==0.5.9",
|
||||
"pymilvus==2.4.7",
|
||||
"opensearch-py==2.7.1",
|
||||
|
||||
"sentence-transformers==3.2.0",
|
||||
"colbert-ai==0.2.21",
|
||||
|
Loading…
Reference in New Issue
Block a user