Go to file
Evan Lezar 5e0684e99d Merge branch 'update-libnvidia-container' into 'main'
Update libnvidia-container

See merge request nvidia/container-toolkit/container-toolkit!353
2023-03-23 08:50:18 +00:00
.github/workflows Add blossom-ci github action 2023-03-17 16:16:27 +01:00
build/container
cmd Only init nvml as required when generating CDI specs 2023-03-20 14:24:08 +02:00
config
docker Remove fedora make targets 2023-03-23 10:35:57 +02:00
internal Instantiate a logger when constructing a library Locator 2023-03-21 13:38:36 -07:00
packaging
pkg/nvcdi Only init nvml as required when generating CDI specs 2023-03-20 14:24:08 +02:00
scripts
test
third_party Update libnvidia-container 2023-03-23 10:33:26 +02:00
tools/container
vendor
.common-ci.yml Rework pipeline triggers for MRs 2023-03-15 14:15:20 +02:00
.dockerignore
.gitignore
.gitlab-ci.yml Rework pipeline triggers for MRs 2023-03-15 14:15:20 +02:00
.gitmodules
.nvidia-ci.yml
CHANGELOG.md Update libnvidia-container 2023-03-23 10:33:26 +02:00
CONTRIBUTING.md
DEVELOPMENT.md
go.mod
go.sum
Jenkinsfile
LICENSE
Makefile
oci-nvidia-hook
oci-nvidia-hook.json
README.md
versions.mk Bump version to v1.13.0-rc.3 2023-03-15 09:26:19 +02:00

NVIDIA Container Toolkit

GitHub license Documentation Package repository

nvidia-container-stack

Introduction

The NVIDIA Container Toolkit allows users to build and run GPU accelerated containers. The toolkit includes a container runtime library and utilities to automatically configure containers to leverage NVIDIA GPUs.

Product documentation including an architecture overview, platform support, and installation and usage guides can be found in the documentation repository.

Getting Started

Make sure you have installed the NVIDIA driver for your Linux Distribution Note that you do not need to install the CUDA Toolkit on the host system, but the NVIDIA driver needs to be installed

For instructions on getting started with the NVIDIA Container Toolkit, refer to the installation guide.

Usage

The user guide provides information on the configuration and command line options available when running GPU containers with Docker.

Issues and Contributing

Checkout the Contributing document!