mirror of
https://github.com/hexastack/hexabot
synced 2025-01-16 15:58:14 +00:00
171 lines
6.1 KiB
Python
171 lines
6.1 KiB
Python
import tensorflow as tf
|
|
from sys import platform
|
|
|
|
if platform == "darwin":
|
|
from keras.optimizers.legacy import Adam
|
|
else:
|
|
from keras.optimizers import Adam
|
|
|
|
from keras import layers, Sequential, regularizers
|
|
import numpy as np
|
|
from typing import Any, Dict, Tuple
|
|
from data_loaders.tflcdl import TFLCDL
|
|
|
|
import boilerplate as tfbp
|
|
|
|
|
|
def mapify(keys: list, values: list) -> dict:
|
|
return dict(zip(keys, values))
|
|
|
|
|
|
def format_float(values: np.ndarray, precision: int = 5, padding: int = 5) -> list:
|
|
return [np.format_float_positional(v, precision=precision, pad_right=padding,
|
|
min_digits=padding) for v in values]
|
|
|
|
|
|
# TFLC (Term Frequency based Language Classifier)
|
|
|
|
@tfbp.default_export
|
|
class TFLC(tfbp.Model):
|
|
default_hparams: Dict[str, Any] = {
|
|
"layer_sizes": [32, 2],
|
|
"num_epochs": 70,
|
|
"kernel_regularizer": 1e-4,
|
|
"bias_regularizer": 1e-4,
|
|
"dropout_proba": .2,
|
|
"learning_rate": 1e-3
|
|
}
|
|
data_loader: TFLCDL
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
|
|
# Init data loader
|
|
self.data_loader = TFLCDL(save_dir=self._save_dir, **kwargs)
|
|
|
|
# Init layers
|
|
self.forward = Sequential()
|
|
|
|
# Dropout layer to avoid overfitting
|
|
self.forward.add(layers.Dropout(self.hparams.dropout_proba))
|
|
|
|
# Hidden feed forward layers
|
|
for hidden_size in self.hparams.layer_sizes[:-1]:
|
|
self.forward.add(layers.Dense(hidden_size, activation=tf.nn.sigmoid,
|
|
kernel_regularizer=regularizers.L2(
|
|
self.hparams.kernel_regularizer),
|
|
bias_regularizer=regularizers.L2(self.hparams.bias_regularizer)))
|
|
|
|
# Output layer
|
|
self.forward.add(layers.Dense(self.hparams.layer_sizes[-1], activation=tf.nn.softmax,
|
|
kernel_regularizer=regularizers.L2(
|
|
self.hparams.kernel_regularizer),
|
|
bias_regularizer=regularizers.L2(self.hparams.bias_regularizer)))
|
|
|
|
self.loss = tf.losses.categorical_crossentropy
|
|
self.optimizer = Adam(self.hparams.learning_rate)
|
|
|
|
def call(self, x: tf.Tensor):
|
|
return self.forward(x)
|
|
|
|
@tfbp.runnable
|
|
def fit(self):
|
|
# getting our training data
|
|
X_train, y_train, languages = self.data_loader()
|
|
self.compile(self.optimizer, self.loss)
|
|
# fitting the model to the data
|
|
super().fit(
|
|
x=X_train,
|
|
y=y_train,
|
|
# validation_split=0.1,
|
|
epochs=self.hparams.num_epochs,
|
|
shuffle=True)
|
|
|
|
self.extra_params["languages"] = languages
|
|
|
|
# Save the model
|
|
self.save()
|
|
|
|
@tfbp.runnable
|
|
def evaluate(self):
|
|
languages = list(self.extra_params['languages'])
|
|
# loading the test set
|
|
X_test, y_test = self.data_loader()
|
|
y_pred = super().predict(X_test)
|
|
|
|
self.calculate_metrics(y_test, y_pred, languages)
|
|
|
|
def preprocess_text(self, text):
|
|
# The predict file contains a single JSON object whose only key is text.
|
|
stripped_text = self.strip_numbers(text)
|
|
encoded_text = np.array(self.tfidf.transform(
|
|
[stripped_text]).toarray()) # type: ignore
|
|
return np.array([stripped_text]), encoded_text
|
|
|
|
@tfbp.runnable
|
|
def predict(self):
|
|
languages = list(self.extra_params['languages'])
|
|
input_provided = input("Provide text: ")
|
|
text, encoded_text = self.preprocess_text(input_provided)
|
|
# converting a one hot output to language index
|
|
probas = super().predict(encoded_text)
|
|
predictions = np.argmax(probas, axis=1)
|
|
|
|
results = []
|
|
for idx, prediction in enumerate(predictions):
|
|
print('The sentence "{}" is in {}.'.format(
|
|
text[idx], languages[prediction].upper()))
|
|
results.append({'text': text[idx], 'language': prediction})
|
|
return results
|
|
|
|
def get_prediction(self, text: str):
|
|
languages = self.extra_params["languages"]
|
|
encoded_text = self.data_loader.encode_text(text)
|
|
probas = super().predict(encoded_text)
|
|
predictions = np.argmax(probas, axis=1)
|
|
prediction_id = predictions[0]
|
|
return {
|
|
'entity': "language",
|
|
'value': languages[prediction_id],
|
|
'confidence': float(probas[0][prediction_id])
|
|
}
|
|
|
|
def calculate_metrics(self, y_true: np.ndarray, y_pred: np.ndarray, languages: list,
|
|
formatting: int = 5) -> Tuple[np.float64, dict, dict, dict]:
|
|
|
|
argm = np.argmax(y_pred, axis=1)
|
|
actual_pred = [i == argm[j] for j in range(
|
|
y_pred.shape[0]) for i in range(y_pred.shape[1])]
|
|
actual_pred = np.array(actual_pred).reshape(-1, y_true.shape[1])
|
|
|
|
# we use these to compute the metrics
|
|
true_positives = (np.logical_and(
|
|
actual_pred == y_true, y_true)).sum(axis=0)
|
|
actual_positives = y_true.sum(axis=0)
|
|
positive_preds = actual_pred.sum(axis=0)
|
|
|
|
# our chosen metrics are recall, precision, accuracy and F1 score
|
|
recall = (true_positives/actual_positives).T
|
|
precision = (true_positives/positive_preds).T
|
|
f1_score = (2*recall*precision/(recall+precision)).T
|
|
|
|
# converting our other metrics into a map (dict)
|
|
recall = mapify(languages, format_float(recall, padding=formatting))
|
|
precision = mapify(languages, format_float(
|
|
precision, padding=formatting))
|
|
f1_score = mapify(languages, format_float(
|
|
f1_score, padding=formatting))
|
|
|
|
# from one hot vectors to the language index
|
|
y_pred = np.array(np.argmax(y_pred, axis=1))
|
|
y_true = np.argmax(y_true, axis=1)
|
|
accuracy = (y_pred == y_true).mean()
|
|
|
|
print("accuracy: {}".format(
|
|
np.format_float_positional(accuracy, formatting)))
|
|
print("recall:\n{}".format(recall))
|
|
print("precision:\n{}".format(precision))
|
|
print("F1 score:\n{}".format(f1_score))
|
|
|
|
return (accuracy, recall, precision, f1_score)
|