feat: refactor inference function

This commit is contained in:
hexastack 2024-10-22 11:57:30 +01:00
parent 15a3787fee
commit 626eaa513d
10 changed files with 68 additions and 38 deletions

3
.idea/.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
# Default ignored files
/shelf/
/workspace.xml

14
.idea/Hexabot.iml Normal file
View File

@ -0,0 +1,14 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.10 (Hexabot)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
<component name="PyDocumentationSettings">
<option name="format" value="PLAIN" />
<option name="myDocStringFormat" value="Plain" />
</component>
</module>

View File

@ -0,0 +1,6 @@
<component name="InspectionProjectProfileManager">
<settings>
<option name="USE_PROJECT_PROFILE" value="false" />
<version value="1.0" />
</settings>
</component>

7
.idea/misc.xml Normal file
View File

@ -0,0 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.10" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (Hexabot)" project-jdk-type="Python SDK" />
</project>

8
.idea/modules.xml Normal file
View File

@ -0,0 +1,8 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="ProjectModuleManager">
<modules>
<module fileurl="file://$PROJECT_DIR$/.idea/Hexabot.iml" filepath="$PROJECT_DIR$/.idea/Hexabot.iml" />
</modules>
</component>
</project>

6
.idea/vcs.xml Normal file
View File

@ -0,0 +1,6 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="" vcs="Git" />
</component>
</project>

View File

@ -125,14 +125,6 @@ class TFLCDL(tfbp.DataLoader):
else:
raise ValueError("Unknown method!")
def get_prediction_data(self):
# The predict file contains a single JSON object whose only key is text.
data = self.json_helper.read_dataset_json_file("predict.json")
text = self.strip_numbers(data["text"])
encoded_texts = np.array(self.tfidf.transform(
[text]).toarray()) # type: ignore
return np.array([text]), encoded_texts
def encode_text(self, text: str):
sanitized_text = self.strip_numbers(text)
return self.tfidf.transform([sanitized_text]).toarray() # type: ignore

View File

@ -211,27 +211,10 @@ class IntentClassifier(tfbp.Model):
@tfbp.runnable
def predict(self):
while True:
text = input("Provide text: ")
inputs = self.data_loader.encode_text(text, self.tokenizer)
intent_probas = self(inputs) # type: ignore
intent_probas_np = intent_probas.numpy()
# Get the indices of the maximum values
intent_id = intent_probas_np.argmax(axis=-1)[0]
# get the confidences for each intent
intent_confidences = intent_probas_np[0]
weighted_margin = self.compute_normalized_confidence_margin(intent_probas_np)
output = {
"text": text,
"intent": {"name": self.extra_params["intent_names"][intent_id],
"confidence": float(intent_confidences[intent_id])},
"margin": weighted_margin,
}
output = self.get_prediction(text)
print(output)
# Optionally, provide a way to exit the loop
if input("Try again? (y/n): ").lower() != 'y':
break

View File

@ -151,16 +151,19 @@ class SlotFiller(tfbp.Model):
@tfbp.runnable
def predict(self):
text = self.data_loader.get_prediction_data()
while True:
text = input("Provide text: ")
info = self.get_prediction(text)
info = self.get_prediction(text)
print(self.summary())
print("Text : " + text)
print(info)
# Optionally, provide a way to exit the loop
if input("Try again? (y/n): ").lower() != 'y':
break
print(self.summary())
print("Text : " + text)
print(json.dumps(info, indent=2))
return json.dumps(info, indent=2)
def get_slots_prediction(self, text: str, inputs, slot_probas):
slot_probas_np = slot_probas.numpy()
# Get the indices of the maximum values

View File

@ -95,19 +95,27 @@ class TFLC(tfbp.Model):
self.calculate_metrics(y_test, y_pred, languages)
def preprocess_text(self, text):
# The predict file contains a single JSON object whose only key is text.
stripped_text = self.strip_numbers(text)
encoded_text = np.array(self.tfidf.transform(
[stripped_text]).toarray()) # type: ignore
return np.array([stripped_text]), encoded_text
@tfbp.runnable
def predict(self):
languages = list(self.extra_params['languages'])
texts, encoded_texts = self.data_loader.get_prediction_data()
input_provided = input("Provide text: ")
text, encoded_text = self.preprocess_text(input_provided)
# converting a one hot output to language index
probas = super().predict(encoded_texts)
probas = super().predict(encoded_text)
predictions = np.argmax(probas, axis=1)
results = []
for idx, prediction in enumerate(predictions):
print('The sentence "{}" is in {}.'.format(
texts[idx], languages[prediction].upper()))
results.append({'text': texts[idx], 'language': prediction})
text[idx], languages[prediction].upper()))
results.append({'text': text[idx], 'language': prediction})
return results
def get_prediction(self, text: str):