mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-04-03 04:40:51 +00:00
296 lines
12 KiB
Python
296 lines
12 KiB
Python
#
|
||
# Copyright (C) 2023, Inria
|
||
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
||
# All rights reserved.
|
||
#
|
||
# This software is free for non-commercial, research and evaluation use
|
||
# under the terms of the LICENSE.md file.
|
||
#
|
||
# For inquiries contact george.drettakis@inria.fr
|
||
#
|
||
|
||
import os
|
||
import sys
|
||
from PIL import Image
|
||
from typing import NamedTuple
|
||
from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \
|
||
read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text
|
||
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal
|
||
import numpy as np
|
||
import json
|
||
from pathlib import Path
|
||
from plyfile import PlyData, PlyElement
|
||
from utils.sh_utils import SH2RGB
|
||
from scene.gaussian_model import BasicPointCloud
|
||
|
||
class CameraInfo(NamedTuple):
|
||
uid: int
|
||
R: np.array
|
||
T: np.array
|
||
FovY: np.array
|
||
FovX: np.array
|
||
image: np.array
|
||
image_path: str
|
||
image_name: str
|
||
width: int
|
||
height: int
|
||
|
||
class SceneInfo(NamedTuple):
|
||
point_cloud: BasicPointCloud
|
||
train_cameras: list
|
||
test_cameras: list
|
||
nerf_normalization: dict
|
||
ply_path: str
|
||
|
||
def getNerfppNorm(cam_info):
|
||
def get_center_and_diag(cam_centers):
|
||
cam_centers = np.hstack(cam_centers)
|
||
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True)
|
||
center = avg_cam_center
|
||
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True)
|
||
diagonal = np.max(dist)
|
||
return center.flatten(), diagonal
|
||
|
||
cam_centers = []
|
||
|
||
for cam in cam_info:
|
||
W2C = getWorld2View2(cam.R, cam.T)
|
||
C2W = np.linalg.inv(W2C)
|
||
cam_centers.append(C2W[:3, 3:4])
|
||
|
||
center, diagonal = get_center_and_diag(cam_centers)
|
||
radius = diagonal * 1.1
|
||
|
||
translate = -center
|
||
|
||
return {"translate": translate, "radius": radius}
|
||
|
||
def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
|
||
cam_infos = [] # 初始化用于存储相机信息的列表
|
||
|
||
# 遍历所有相机的外参
|
||
for idx, key in enumerate(cam_extrinsics):
|
||
# 动态显示读取相机信息的进度
|
||
sys.stdout.write('\r')
|
||
# the exact output you're looking for:
|
||
sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics)))
|
||
sys.stdout.flush()
|
||
|
||
# 获取当前相机的外参和内参
|
||
extr = cam_extrinsics[key] # 当前相机的外参
|
||
intr = cam_intrinsics[extr.camera_id] # 根据外参中的camera_id找到对应的内参
|
||
height = intr.height # 相机图片的高度
|
||
width = intr.width # 相机图片的宽度
|
||
|
||
uid = intr.id # 相机的唯一标识符
|
||
|
||
R = np.transpose(qvec2rotmat(extr.qvec)) # 将四元数表示的旋转转换为旋转矩阵R
|
||
T = np.array(extr.tvec) # 外参中的平移向量
|
||
|
||
# 根据相机内参模型计算视场角(FoV)
|
||
if intr.model=="SIMPLE_PINHOLE":
|
||
# 如果是简单针孔模型,只有一个焦距参数
|
||
focal_length_x = intr.params[0]
|
||
FovY = focal2fov(focal_length_x, height) # 计算垂直方向的视场角
|
||
FovX = focal2fov(focal_length_x, width) # 计算水平方向的视场角
|
||
elif intr.model=="PINHOLE":
|
||
# 如果是针孔模型,有两个焦距参数
|
||
focal_length_x = intr.params[0]
|
||
focal_length_y = intr.params[1]
|
||
FovY = focal2fov(focal_length_y, height) # 使用y方向的焦距计算垂直视场角
|
||
FovX = focal2fov(focal_length_x, width) # 使用x方向的焦距计算水平视场角
|
||
elif intr.model=="SIMPLE_RADIAL":
|
||
# 如果是针孔模型,有两个焦距参数
|
||
focal_length_x = intr.params[0]
|
||
focal_length_y = intr.params[1]
|
||
FovY = focal2fov(focal_length_y, height) # 使用y方向的焦距计算垂直视场角
|
||
FovX = focal2fov(focal_length_x, width) # 使用x方向的焦距计算水平视场角
|
||
else:
|
||
# 如果不是以上两种模型,抛出错误
|
||
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!"
|
||
|
||
image_path = os.path.join(images_folder, extr.name)
|
||
image_name = os.path.basename(image_path).split(".")[0]
|
||
|
||
if not os.path.exists(image_path):
|
||
continue
|
||
image = Image.open(image_path)
|
||
|
||
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
|
||
image_path=image_path, image_name=image_name, width=width, height=height)
|
||
cam_infos.append(cam_info)
|
||
# 在读取完所有相机信息后换行
|
||
sys.stdout.write('\n')
|
||
print("valid Colmap camera size: {}".format(len(cam_infos)))
|
||
|
||
# 返回整理好的相机信息列表
|
||
return cam_infos
|
||
|
||
def fetchPly(path):
|
||
# 读取.ply文件
|
||
plydata = PlyData.read(path)
|
||
# 其第一个属性,即vertex的信息为:x', 'y', 'z', 'nx', 'ny', 'nz', 3个'f_dc_x', 45个'f_rest_xx', 'opacity', 3个'scale_x', 4个'rot_x'
|
||
vertices = plydata['vertex']
|
||
positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T
|
||
colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0
|
||
normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T
|
||
return BasicPointCloud(points=positions, colors=colors, normals=normals)
|
||
|
||
def storePly(path, xyz, rgb):
|
||
# Define the dtype for the structured array
|
||
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'),
|
||
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'),
|
||
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]
|
||
|
||
normals = np.zeros_like(xyz)
|
||
|
||
elements = np.empty(xyz.shape[0], dtype=dtype)
|
||
attributes = np.concatenate((xyz, normals, rgb), axis=1)
|
||
elements[:] = list(map(tuple, attributes))
|
||
|
||
# Create the PlyData object and write to file
|
||
vertex_element = PlyElement.describe(elements, 'vertex')
|
||
ply_data = PlyData([vertex_element])
|
||
ply_data.write(path)
|
||
|
||
# 尝试读取COLMAP处理结果中的二进制相机外参文件imags.bin 和 内参文件cameras.bin
|
||
def readColmapSceneInfo(path, images, eval, llffhold=8):
|
||
try:
|
||
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin")
|
||
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin")
|
||
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file)
|
||
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file)
|
||
except:
|
||
# 如果二进制文件读取失败,尝试读取文本格式的相机外参和内参文件
|
||
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt")
|
||
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt")
|
||
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file)
|
||
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file)
|
||
|
||
# 定义存放图片的目录,如果未指定则默认为"images"
|
||
reading_dir = "images" if images == None else images
|
||
|
||
# 读取并处理相机参数,转换为内部使用的格式
|
||
cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir))
|
||
# 根据图片名称对相机信息进行排序,以保证顺序一致性
|
||
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : (x.image_path.split('/')[-2], x.image_name))
|
||
|
||
# 根据是否为评估模式(eval),将相机分为训练集和测试集
|
||
# 如果为评估模式,根据llffhold参数(通常用于LLFF数据集)间隔选择测试相机
|
||
if eval:
|
||
train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0]
|
||
test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0]
|
||
else:
|
||
# 如果不是评估模式,所有相机均为训练相机,测试相机列表为空
|
||
train_cam_infos = cam_infos
|
||
test_cam_infos = []
|
||
|
||
# 计算场景归一化参数,这是为了处理不同尺寸和位置的场景,使模型训练更稳定
|
||
nerf_normalization = getNerfppNorm(train_cam_infos)
|
||
|
||
# 尝试读取点云数据,优先从PLY文件读取,如果不存在,则尝试从BIN或TXT文件转换并保存为PLY格式
|
||
ply_path = os.path.join(path, "sparse/0/points3D.ply")
|
||
bin_path = os.path.join(path, "sparse/0/points3D.bin")
|
||
txt_path = os.path.join(path, "sparse/0/points3D.txt")
|
||
if not os.path.exists(ply_path):
|
||
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.")
|
||
try:
|
||
xyz, rgb, _ = read_points3D_binary(bin_path) # 从points3D.bin读取COLMAP产生的稀疏点云
|
||
except:
|
||
xyz, rgb, _ = read_points3D_text(txt_path)
|
||
storePly(ply_path, xyz, rgb) # 转换成ply文件
|
||
try:
|
||
pcd = fetchPly(ply_path)
|
||
except:
|
||
pcd = None
|
||
|
||
# 组装场景信息,包括点云、训练用相机、测试用相机、场景归一化参数和点云文件路径
|
||
scene_info = SceneInfo(point_cloud=pcd,
|
||
train_cameras=train_cam_infos,
|
||
test_cameras=test_cam_infos,
|
||
nerf_normalization=nerf_normalization,
|
||
ply_path=ply_path)
|
||
return scene_info
|
||
|
||
def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"):
|
||
cam_infos = []
|
||
|
||
with open(os.path.join(path, transformsfile)) as json_file:
|
||
contents = json.load(json_file)
|
||
fovx = contents["camera_angle_x"]
|
||
|
||
frames = contents["frames"]
|
||
for idx, frame in enumerate(frames):
|
||
cam_name = os.path.join(path, frame["file_path"] + extension)
|
||
|
||
# NeRF 'transform_matrix' is a camera-to-world transform
|
||
c2w = np.array(frame["transform_matrix"])
|
||
# change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward)
|
||
c2w[:3, 1:3] *= -1
|
||
|
||
# get the world-to-camera transform and set R, T
|
||
w2c = np.linalg.inv(c2w)
|
||
R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code
|
||
T = w2c[:3, 3]
|
||
|
||
image_path = os.path.join(path, cam_name)
|
||
image_name = Path(cam_name).stem
|
||
image = Image.open(image_path)
|
||
|
||
im_data = np.array(image.convert("RGBA"))
|
||
|
||
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0])
|
||
|
||
norm_data = im_data / 255.0
|
||
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4])
|
||
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB")
|
||
|
||
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1])
|
||
FovY = fovy
|
||
FovX = fovx
|
||
|
||
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
|
||
image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1]))
|
||
|
||
return cam_infos
|
||
|
||
def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
|
||
print("Reading Training Transforms")
|
||
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension)
|
||
print("Reading Test Transforms")
|
||
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension)
|
||
|
||
if not eval:
|
||
train_cam_infos.extend(test_cam_infos)
|
||
test_cam_infos = []
|
||
|
||
nerf_normalization = getNerfppNorm(train_cam_infos)
|
||
|
||
ply_path = os.path.join(path, "points3d.ply")
|
||
if not os.path.exists(ply_path):
|
||
# Since this data set has no colmap data, we start with random points
|
||
num_pts = 100_000
|
||
print(f"Generating random point cloud ({num_pts})...")
|
||
|
||
# We create random points inside the bounds of the synthetic Blender scenes
|
||
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3
|
||
shs = np.random.random((num_pts, 3)) / 255.0
|
||
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3)))
|
||
|
||
storePly(ply_path, xyz, SH2RGB(shs) * 255)
|
||
try:
|
||
pcd = fetchPly(ply_path)
|
||
except:
|
||
pcd = None
|
||
|
||
scene_info = SceneInfo(point_cloud=pcd,
|
||
train_cameras=train_cam_infos,
|
||
test_cameras=test_cam_infos,
|
||
nerf_normalization=nerf_normalization,
|
||
ply_path=ply_path)
|
||
return scene_info
|
||
|
||
sceneLoadTypeCallbacks = {
|
||
"Colmap": readColmapSceneInfo,
|
||
"Blender" : readNerfSyntheticInfo
|
||
} |