# # Copyright (C) 2023, Inria # GRAPHDECO research group, https://team.inria.fr/graphdeco # All rights reserved. # # This software is free for non-commercial, research and evaluation use # under the terms of the LICENSE.md file. # # For inquiries contact george.drettakis@inria.fr # import os import sys from PIL import Image from typing import NamedTuple from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal import numpy as np import json from pathlib import Path from plyfile import PlyData, PlyElement from utils.sh_utils import SH2RGB from scene.gaussian_model import BasicPointCloud class CameraInfo(NamedTuple): uid: int R: np.array T: np.array FovY: np.array FovX: np.array image: np.array image_path: str image_name: str width: int height: int class SceneInfo(NamedTuple): point_cloud: BasicPointCloud train_cameras: list test_cameras: list nerf_normalization: dict ply_path: str def getNerfppNorm(cam_info): def get_center_and_diag(cam_centers): cam_centers = np.hstack(cam_centers) avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) center = avg_cam_center dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) diagonal = np.max(dist) return center.flatten(), diagonal cam_centers = [] for cam in cam_info: W2C = getWorld2View2(cam.R, cam.T) C2W = np.linalg.inv(W2C) cam_centers.append(C2W[:3, 3:4]) center, diagonal = get_center_and_diag(cam_centers) radius = diagonal * 1.1 translate = -center return {"translate": translate, "radius": radius} def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder): cam_infos = [] # 初始化用于存储相机信息的列表 # 遍历所有相机的外参 for idx, key in enumerate(cam_extrinsics): # 动态显示读取相机信息的进度 sys.stdout.write('\r') # the exact output you're looking for: sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics))) sys.stdout.flush() # 获取当前相机的外参和内参 extr = cam_extrinsics[key] # 当前相机的外参 intr = cam_intrinsics[extr.camera_id] # 根据外参中的camera_id找到对应的内参 height = intr.height # 相机图片的高度 width = intr.width # 相机图片的宽度 uid = intr.id # 相机的唯一标识符 R = np.transpose(qvec2rotmat(extr.qvec)) # 将四元数表示的旋转转换为旋转矩阵R T = np.array(extr.tvec) # 外参中的平移向量 # 根据相机内参模型计算视场角(FoV) if intr.model=="SIMPLE_PINHOLE": # 如果是简单针孔模型,只有一个焦距参数 focal_length_x = intr.params[0] FovY = focal2fov(focal_length_x, height) # 计算垂直方向的视场角 FovX = focal2fov(focal_length_x, width) # 计算水平方向的视场角 elif intr.model=="PINHOLE": # 如果是针孔模型,有两个焦距参数 focal_length_x = intr.params[0] focal_length_y = intr.params[1] FovY = focal2fov(focal_length_y, height) # 使用y方向的焦距计算垂直视场角 FovX = focal2fov(focal_length_x, width) # 使用x方向的焦距计算水平视场角 elif intr.model=="SIMPLE_RADIAL": # 如果是针孔模型,有两个焦距参数 focal_length_x = intr.params[0] focal_length_y = intr.params[1] FovY = focal2fov(focal_length_y, height) # 使用y方向的焦距计算垂直视场角 FovX = focal2fov(focal_length_x, width) # 使用x方向的焦距计算水平视场角 else: # 如果不是以上两种模型,抛出错误 assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" image_path = os.path.join(images_folder, extr.name) image_name = os.path.basename(image_path).split(".")[0] if not os.path.exists(image_path): continue image = Image.open(image_path) cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=width, height=height) cam_infos.append(cam_info) # 在读取完所有相机信息后换行 sys.stdout.write('\n') print("valid Colmap camera size: {}".format(len(cam_infos))) # 返回整理好的相机信息列表 return cam_infos def fetchPly(path): # 读取.ply文件 plydata = PlyData.read(path) # 其第一个属性,即vertex的信息为:x', 'y', 'z', 'nx', 'ny', 'nz', 3个'f_dc_x', 45个'f_rest_xx', 'opacity', 3个'scale_x', 4个'rot_x' vertices = plydata['vertex'] positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0 normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T return BasicPointCloud(points=positions, colors=colors, normals=normals) def storePly(path, xyz, rgb): # Define the dtype for the structured array dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] normals = np.zeros_like(xyz) elements = np.empty(xyz.shape[0], dtype=dtype) attributes = np.concatenate((xyz, normals, rgb), axis=1) elements[:] = list(map(tuple, attributes)) # Create the PlyData object and write to file vertex_element = PlyElement.describe(elements, 'vertex') ply_data = PlyData([vertex_element]) ply_data.write(path) # 尝试读取COLMAP处理结果中的二进制相机外参文件imags.bin 和 内参文件cameras.bin def readColmapSceneInfo(path, images, eval, llffhold=8): try: cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) except: # 如果二进制文件读取失败,尝试读取文本格式的相机外参和内参文件 cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) # 定义存放图片的目录,如果未指定则默认为"images" reading_dir = "images" if images == None else images # 读取并处理相机参数,转换为内部使用的格式 cam_infos_unsorted = readColmapCameras(cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, images_folder=os.path.join(path, reading_dir)) # 根据图片名称对相机信息进行排序,以保证顺序一致性 cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : (x.image_path.split('/')[-2], x.image_name)) # 根据是否为评估模式(eval),将相机分为训练集和测试集 # 如果为评估模式,根据llffhold参数(通常用于LLFF数据集)间隔选择测试相机 if eval: train_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold != 0] test_cam_infos = [c for idx, c in enumerate(cam_infos) if idx % llffhold == 0] else: # 如果不是评估模式,所有相机均为训练相机,测试相机列表为空 train_cam_infos = cam_infos test_cam_infos = [] # 计算场景归一化参数,这是为了处理不同尺寸和位置的场景,使模型训练更稳定 nerf_normalization = getNerfppNorm(train_cam_infos) # 尝试读取点云数据,优先从PLY文件读取,如果不存在,则尝试从BIN或TXT文件转换并保存为PLY格式 ply_path = os.path.join(path, "sparse/0/points3D.ply") bin_path = os.path.join(path, "sparse/0/points3D.bin") txt_path = os.path.join(path, "sparse/0/points3D.txt") if not os.path.exists(ply_path): print("Converting point3d.bin to .ply, will happen only the first time you open the scene.") try: xyz, rgb, _ = read_points3D_binary(bin_path) # 从points3D.bin读取COLMAP产生的稀疏点云 except: xyz, rgb, _ = read_points3D_text(txt_path) storePly(ply_path, xyz, rgb) # 转换成ply文件 try: pcd = fetchPly(ply_path) except: pcd = None # 组装场景信息,包括点云、训练用相机、测试用相机、场景归一化参数和点云文件路径 scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info def readCamerasFromTransforms(path, transformsfile, white_background, extension=".png"): cam_infos = [] with open(os.path.join(path, transformsfile)) as json_file: contents = json.load(json_file) fovx = contents["camera_angle_x"] frames = contents["frames"] for idx, frame in enumerate(frames): cam_name = os.path.join(path, frame["file_path"] + extension) # NeRF 'transform_matrix' is a camera-to-world transform c2w = np.array(frame["transform_matrix"]) # change from OpenGL/Blender camera axes (Y up, Z back) to COLMAP (Y down, Z forward) c2w[:3, 1:3] *= -1 # get the world-to-camera transform and set R, T w2c = np.linalg.inv(c2w) R = np.transpose(w2c[:3,:3]) # R is stored transposed due to 'glm' in CUDA code T = w2c[:3, 3] image_path = os.path.join(path, cam_name) image_name = Path(cam_name).stem image = Image.open(image_path) im_data = np.array(image.convert("RGBA")) bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0]) norm_data = im_data / 255.0 arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4]) image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB") fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1]) FovY = fovy FovX = fovx cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, image=image, image_path=image_path, image_name=image_name, width=image.size[0], height=image.size[1])) return cam_infos def readNerfSyntheticInfo(path, white_background, eval, extension=".png"): print("Reading Training Transforms") train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", white_background, extension) print("Reading Test Transforms") test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", white_background, extension) if not eval: train_cam_infos.extend(test_cam_infos) test_cam_infos = [] nerf_normalization = getNerfppNorm(train_cam_infos) ply_path = os.path.join(path, "points3d.ply") if not os.path.exists(ply_path): # Since this data set has no colmap data, we start with random points num_pts = 100_000 print(f"Generating random point cloud ({num_pts})...") # We create random points inside the bounds of the synthetic Blender scenes xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 shs = np.random.random((num_pts, 3)) / 255.0 pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))) storePly(ply_path, xyz, SH2RGB(shs) * 255) try: pcd = fetchPly(ply_path) except: pcd = None scene_info = SceneInfo(point_cloud=pcd, train_cameras=train_cam_infos, test_cameras=test_cam_infos, nerf_normalization=nerf_normalization, ply_path=ply_path) return scene_info sceneLoadTypeCallbacks = { "Colmap": readColmapSceneInfo, "Blender" : readNerfSyntheticInfo }