mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-26 21:59:37 +00:00
989320fdf2
* Provide --data_on_cpu option to save VRAM for training when there are many training images such as in large scene, most of the VRAM are used to store training data, use --data_on_cpu can help reduce VRAM and make it possible to train on GPU with less VRAM * Fix data_on_cpu effect on default mask * --data_on_cpu to --data_device * update readme * format warning infos
83 lines
2.7 KiB
Python
83 lines
2.7 KiB
Python
#
|
|
# Copyright (C) 2023, Inria
|
|
# GRAPHDECO research group, https://team.inria.fr/graphdeco
|
|
# All rights reserved.
|
|
#
|
|
# This software is free for non-commercial, research and evaluation use
|
|
# under the terms of the LICENSE.md file.
|
|
#
|
|
# For inquiries contact george.drettakis@inria.fr
|
|
#
|
|
|
|
from scene.cameras import Camera
|
|
import numpy as np
|
|
from utils.general_utils import PILtoTorch
|
|
from utils.graphics_utils import fov2focal
|
|
|
|
WARNED = False
|
|
|
|
def loadCam(args, id, cam_info, resolution_scale):
|
|
orig_w, orig_h = cam_info.image.size
|
|
|
|
if args.resolution in [1, 2, 4, 8]:
|
|
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution))
|
|
else: # should be a type that converts to float
|
|
if args.resolution == -1:
|
|
if orig_w > 1600:
|
|
global WARNED
|
|
if not WARNED:
|
|
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n "
|
|
"If this is not desired, please explicitly specify '--resolution/-r' as 1")
|
|
WARNED = True
|
|
global_down = orig_w / 1600
|
|
else:
|
|
global_down = 1
|
|
else:
|
|
global_down = orig_w / args.resolution
|
|
|
|
scale = float(global_down) * float(resolution_scale)
|
|
resolution = (int(orig_w / scale), int(orig_h / scale))
|
|
|
|
resized_image_rgb = PILtoTorch(cam_info.image, resolution)
|
|
|
|
gt_image = resized_image_rgb[:3, ...]
|
|
loaded_mask = None
|
|
|
|
if resized_image_rgb.shape[1] == 4:
|
|
loaded_mask = resized_image_rgb[3:4, ...]
|
|
|
|
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
|
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
|
image=gt_image, gt_alpha_mask=loaded_mask,
|
|
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
|
|
|
|
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
|
|
camera_list = []
|
|
|
|
for id, c in enumerate(cam_infos):
|
|
camera_list.append(loadCam(args, id, c, resolution_scale))
|
|
|
|
return camera_list
|
|
|
|
def camera_to_JSON(id, camera : Camera):
|
|
Rt = np.zeros((4, 4))
|
|
Rt[:3, :3] = camera.R.transpose()
|
|
Rt[:3, 3] = camera.T
|
|
Rt[3, 3] = 1.0
|
|
|
|
W2C = np.linalg.inv(Rt)
|
|
pos = W2C[:3, 3]
|
|
rot = W2C[:3, :3]
|
|
serializable_array_2d = [x.tolist() for x in rot]
|
|
camera_entry = {
|
|
'id' : id,
|
|
'img_name' : camera.image_name,
|
|
'width' : camera.width,
|
|
'height' : camera.height,
|
|
'position': pos.tolist(),
|
|
'rotation': serializable_array_2d,
|
|
'fy' : fov2focal(camera.FovY, camera.height),
|
|
'fx' : fov2focal(camera.FovX, camera.width)
|
|
}
|
|
return camera_entry
|