mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-01-22 10:35:43 +00:00
Provide --data_device option to put data on CPU to save VRAM for training (#14)
* Provide --data_on_cpu option to save VRAM for training when there are many training images such as in large scene, most of the VRAM are used to store training data, use --data_on_cpu can help reduce VRAM and make it possible to train on GPU with less VRAM * Fix data_on_cpu effect on default mask * --data_on_cpu to --data_device * update readme * format warning infos
This commit is contained in:
parent
cebfc978f3
commit
989320fdf2
@ -165,6 +165,8 @@ python train.py -s <path to COLMAP or NeRF Synthetic dataset>
|
||||
Space-separated iterations at which the training script saves the Gaussian model, ```7000 30000 <iterations>``` by default.
|
||||
#### --quiet
|
||||
Flag to omit any text written to standard out pipe.
|
||||
#### --data_device
|
||||
Specify where to put the data on,```cuda``` by default, recommend use ```cpu``` if training on large scale/resolution dataset, will save a lot of VRAM required to train, but slightly slower the training
|
||||
|
||||
</details>
|
||||
<br>
|
||||
|
@ -52,6 +52,7 @@ class ModelParams(ParamGroup):
|
||||
self._images = "images"
|
||||
self._resolution = -1
|
||||
self._white_background = False
|
||||
self.data_device = "cuda"
|
||||
self.eval = False
|
||||
super().__init__(parser, "Loading Parameters", sentinel)
|
||||
|
||||
|
@ -17,7 +17,7 @@ from utils.graphics_utils import getWorld2View2, getProjectionMatrix
|
||||
class Camera(nn.Module):
|
||||
def __init__(self, colmap_id, R, T, FoVx, FoVy, image, gt_alpha_mask,
|
||||
image_name, uid,
|
||||
trans=np.array([0.0, 0.0, 0.0]), scale=1.0
|
||||
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda"
|
||||
):
|
||||
super(Camera, self).__init__()
|
||||
|
||||
@ -29,14 +29,21 @@ class Camera(nn.Module):
|
||||
self.FoVy = FoVy
|
||||
self.image_name = image_name
|
||||
|
||||
self.original_image = image.clamp(0.0, 1.0).cuda()
|
||||
try:
|
||||
self.data_device = torch.device(data_device)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" )
|
||||
self.data_device = torch.device("cuda")
|
||||
|
||||
self.original_image = image.clamp(0.0, 1.0).to(self.data_device)
|
||||
self.image_width = self.original_image.shape[2]
|
||||
self.image_height = self.original_image.shape[1]
|
||||
|
||||
if gt_alpha_mask is not None:
|
||||
self.original_image *= gt_alpha_mask.cuda()
|
||||
self.original_image *= gt_alpha_mask.to(self.data_device)
|
||||
else:
|
||||
self.original_image *= torch.ones((1, self.image_height, self.image_width), device="cuda")
|
||||
self.original_image *= torch.ones((1, self.image_height, self.image_width), device=self.data_device)
|
||||
|
||||
self.zfar = 100.0
|
||||
self.znear = 0.01
|
||||
|
@ -49,7 +49,7 @@ def loadCam(args, id, cam_info, resolution_scale):
|
||||
return Camera(colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T,
|
||||
FoVx=cam_info.FovX, FoVy=cam_info.FovY,
|
||||
image=gt_image, gt_alpha_mask=loaded_mask,
|
||||
image_name=cam_info.image_name, uid=id)
|
||||
image_name=cam_info.image_name, uid=id, data_device=args.data_device)
|
||||
|
||||
def cameraList_from_camInfos(cam_infos, resolution_scale, args):
|
||||
camera_list = []
|
||||
|
Loading…
Reference in New Issue
Block a user