mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-04-03 12:50:53 +00:00
Merge 8f8ce1086d
into 8a70a8cd6f
This commit is contained in:
commit
1dd060734b
2
.gitmodules
vendored
2
.gitmodules
vendored
@ -3,7 +3,7 @@
|
||||
url = https://gitlab.inria.fr/bkerbl/simple-knn.git
|
||||
[submodule "submodules/diff-gaussian-rasterization"]
|
||||
path = submodules/diff-gaussian-rasterization
|
||||
url = https://github.com/graphdeco-inria/diff-gaussian-rasterization
|
||||
url = https://github.com/jkulhanek/fork-diff-gaussian-rasterization.git
|
||||
[submodule "SIBR_viewers"]
|
||||
path = SIBR_viewers
|
||||
url = https://gitlab.inria.fr/sibr/sibr_core.git
|
||||
|
@ -15,7 +15,7 @@ from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianR
|
||||
from scene.gaussian_model import GaussianModel
|
||||
from utils.sh_utils import eval_sh
|
||||
|
||||
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
|
||||
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None, return_accumulation=False):
|
||||
"""
|
||||
Render the scene.
|
||||
|
||||
@ -32,7 +32,6 @@ def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor,
|
||||
# Set up rasterization configuration
|
||||
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
||||
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
||||
|
||||
raster_settings = GaussianRasterizationSettings(
|
||||
image_height=int(viewpoint_camera.image_height),
|
||||
image_width=int(viewpoint_camera.image_width),
|
||||
@ -45,7 +44,8 @@ def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor,
|
||||
sh_degree=pc.active_sh_degree,
|
||||
campos=viewpoint_camera.camera_center,
|
||||
prefiltered=False,
|
||||
debug=pipe.debug
|
||||
debug=pipe.debug,
|
||||
return_accumulation=return_accumulation
|
||||
)
|
||||
|
||||
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
||||
@ -82,7 +82,7 @@ def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor,
|
||||
colors_precomp = override_color
|
||||
|
||||
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
||||
rendered_image, radii = rasterizer(
|
||||
rendered_image, radii, accumulation = rasterizer(
|
||||
means3D = means3D,
|
||||
means2D = means2D,
|
||||
shs = shs,
|
||||
@ -94,7 +94,10 @@ def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor,
|
||||
|
||||
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
||||
# They will be excluded from value updates used in the splitting criteria.
|
||||
return {"render": rendered_image,
|
||||
"viewspace_points": screenspace_points,
|
||||
"visibility_filter" : radii > 0,
|
||||
"radii": radii}
|
||||
out = {"render": rendered_image,
|
||||
"viewspace_points": screenspace_points,
|
||||
"visibility_filter" : radii > 0,
|
||||
"radii": radii}
|
||||
if raster_settings.return_accumulation:
|
||||
out["accumulation"] = accumulation
|
||||
return out
|
||||
|
@ -31,6 +31,8 @@ def readImages(renders_dir, gt_dir):
|
||||
renders.append(tf.to_tensor(render).unsqueeze(0)[:, :3, :, :].cuda())
|
||||
gts.append(tf.to_tensor(gt).unsqueeze(0)[:, :3, :, :].cuda())
|
||||
image_names.append(fname)
|
||||
gt.close()
|
||||
render.close()
|
||||
return renders, gts, image_names
|
||||
|
||||
def evaluate(model_paths):
|
||||
|
@ -96,7 +96,9 @@ def readColmapCameras(cam_extrinsics, cam_intrinsics, images_folder):
|
||||
|
||||
image_path = os.path.join(images_folder, os.path.basename(extr.name))
|
||||
image_name = os.path.basename(image_path).split(".")[0]
|
||||
image = Image.open(image_path)
|
||||
image_fs = Image.open(image_path)
|
||||
image = image_fs.copy()
|
||||
image_fs.close()
|
||||
|
||||
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, image=image,
|
||||
image_path=image_path, image_name=image_name, width=width, height=height)
|
||||
@ -199,6 +201,9 @@ def readCamerasFromTransforms(path, transformsfile, white_background, extension=
|
||||
|
||||
image_path = os.path.join(path, cam_name)
|
||||
image_name = Path(cam_name).stem
|
||||
image_fs = Image.open(image_path)
|
||||
image = image_fs.copy()
|
||||
image_fs.close()
|
||||
image = Image.open(image_path)
|
||||
|
||||
im_data = np.array(image.convert("RGBA"))
|
||||
@ -257,4 +262,4 @@ def readNerfSyntheticInfo(path, white_background, eval, extension=".png"):
|
||||
sceneLoadTypeCallbacks = {
|
||||
"Colmap": readColmapSceneInfo,
|
||||
"Blender" : readNerfSyntheticInfo
|
||||
}
|
||||
}
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit 59f5f77e3ddbac3ed9db93ec2cfe99ed6c5d121d
|
||||
Subproject commit 6cf71af574a8ac3463b7fcf02dfb54ecf4b684e8
|
4
train.py
4
train.py
@ -56,7 +56,9 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
net_image_bytes = None
|
||||
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
|
||||
if custom_cam != None:
|
||||
net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
|
||||
out = render(custom_cam, gaussians, pipe, background, scaling_modifer, return_accumulation=True)
|
||||
# net_image = out["render"]
|
||||
net_image = out["accumulation"][None].repeat(3, 1, 1)
|
||||
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
|
||||
network_gui.send(net_image_bytes, dataset.source_path)
|
||||
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
|
||||
|
Loading…
Reference in New Issue
Block a user