mirror of
https://github.com/open-webui/pipelines
synced 2025-05-10 23:50:45 +00:00
95 lines
2.9 KiB
Python
95 lines
2.9 KiB
Python
"""
|
|
title: Llama Index Ollama Github Pipeline
|
|
author: open-webui
|
|
date: 2024-05-30
|
|
version: 1.0
|
|
license: MIT
|
|
description: A pipeline for retrieving relevant information from a knowledge base using the Llama Index library with Ollama embeddings from a GitHub repository.
|
|
requirements: llama-index, llama-index-llms-ollama, llama-index-embeddings-ollama, llama-index-readers-github
|
|
"""
|
|
|
|
from typing import List, Union, Generator, Iterator
|
|
from schemas import OpenAIChatMessage
|
|
import os
|
|
import asyncio
|
|
|
|
|
|
class Pipeline:
|
|
def __init__(self):
|
|
self.documents = None
|
|
self.index = None
|
|
|
|
async def on_startup(self):
|
|
from llama_index.embeddings.ollama import OllamaEmbedding
|
|
from llama_index.llms.ollama import Ollama
|
|
from llama_index.core import VectorStoreIndex, Settings
|
|
from llama_index.readers.github import GithubRepositoryReader, GithubClient
|
|
|
|
Settings.embed_model = OllamaEmbedding(
|
|
model_name="nomic-embed-text",
|
|
base_url="http://localhost:11434",
|
|
)
|
|
Settings.llm = Ollama(model="llama3")
|
|
|
|
global index, documents
|
|
|
|
github_token = os.environ.get("GITHUB_TOKEN")
|
|
owner = "open-webui"
|
|
repo = "plugin-server"
|
|
branch = "main"
|
|
|
|
github_client = GithubClient(github_token=github_token, verbose=True)
|
|
|
|
reader = GithubRepositoryReader(
|
|
github_client=github_client,
|
|
owner=owner,
|
|
repo=repo,
|
|
use_parser=False,
|
|
verbose=False,
|
|
filter_file_extensions=(
|
|
[
|
|
".png",
|
|
".jpg",
|
|
".jpeg",
|
|
".gif",
|
|
".svg",
|
|
".ico",
|
|
"json",
|
|
".ipynb",
|
|
],
|
|
GithubRepositoryReader.FilterType.EXCLUDE,
|
|
),
|
|
)
|
|
|
|
loop = asyncio.new_event_loop()
|
|
|
|
reader._loop = loop
|
|
|
|
try:
|
|
# Load data from the branch
|
|
self.documents = await asyncio.to_thread(reader.load_data, branch=branch)
|
|
self.index = VectorStoreIndex.from_documents(self.documents)
|
|
finally:
|
|
loop.close()
|
|
|
|
print(self.documents)
|
|
print(self.index)
|
|
|
|
async def on_shutdown(self):
|
|
# This function is called when the server is stopped.
|
|
pass
|
|
|
|
def pipe(
|
|
self, user_message: str, model_id: str, messages: List[dict], body: dict
|
|
) -> Union[str, Generator, Iterator]:
|
|
# This is where you can add your custom RAG pipeline.
|
|
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
|
|
|
|
print(messages)
|
|
print(user_message)
|
|
|
|
query_engine = self.index.as_query_engine(streaming=True)
|
|
response = query_engine.query(user_message)
|
|
|
|
return response.response_gen
|