""" title: Llama Index Ollama Github Pipeline author: open-webui date: 2024-05-30 version: 1.0 license: MIT description: A pipeline for retrieving relevant information from a knowledge base using the Llama Index library with Ollama embeddings from a GitHub repository. requirements: llama-index, llama-index-llms-ollama, llama-index-embeddings-ollama, llama-index-readers-github """ from typing import List, Union, Generator, Iterator from schemas import OpenAIChatMessage import os import asyncio class Pipeline: def __init__(self): self.documents = None self.index = None async def on_startup(self): from llama_index.embeddings.ollama import OllamaEmbedding from llama_index.llms.ollama import Ollama from llama_index.core import VectorStoreIndex, Settings from llama_index.readers.github import GithubRepositoryReader, GithubClient Settings.embed_model = OllamaEmbedding( model_name="nomic-embed-text", base_url="http://localhost:11434", ) Settings.llm = Ollama(model="llama3") global index, documents github_token = os.environ.get("GITHUB_TOKEN") owner = "open-webui" repo = "plugin-server" branch = "main" github_client = GithubClient(github_token=github_token, verbose=True) reader = GithubRepositoryReader( github_client=github_client, owner=owner, repo=repo, use_parser=False, verbose=False, filter_file_extensions=( [ ".png", ".jpg", ".jpeg", ".gif", ".svg", ".ico", "json", ".ipynb", ], GithubRepositoryReader.FilterType.EXCLUDE, ), ) loop = asyncio.new_event_loop() reader._loop = loop try: # Load data from the branch self.documents = await asyncio.to_thread(reader.load_data, branch=branch) self.index = VectorStoreIndex.from_documents(self.documents) finally: loop.close() print(self.documents) print(self.index) async def on_shutdown(self): # This function is called when the server is stopped. pass def pipe( self, user_message: str, model_id: str, messages: List[dict], body: dict ) -> Union[str, Generator, Iterator]: # This is where you can add your custom RAG pipeline. # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response. print(messages) print(user_message) query_engine = self.index.as_query_engine(streaming=True) response = query_engine.query(user_message) return response.response_gen