pipelines/pipelines/examples/llama_cpp_pipeline.py
2024-05-21 22:43:43 -07:00

48 lines
1.4 KiB
Python

from typing import List, Union, Generator, Iterator
from schemas import OpenAIChatMessage
class Pipeline:
def __init__(self):
# Optionally, you can set the id and name of the pipeline.
self.id = "llama_cpp_pipeline"
self.name = "Llama C++ Pipeline"
self.llm = None
pass
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
from llama_cpp import Llama
self.llm = Llama(
model_path="./models/llama3.gguf",
# n_gpu_layers=-1, # Uncomment to use GPU acceleration
# seed=1337, # Uncomment to set a specific seed
# n_ctx=2048, # Uncomment to increase the context window
)
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
def get_response(
self, user_message: str, messages: List[OpenAIChatMessage], body: dict
) -> Union[str, Generator, Iterator]:
# This is where you can add your custom pipelines like RAG.'
print(f"get_response:{__name__}")
print(messages)
print(user_message)
print(body)
response = self.llm.create_chat_completion_openai_v1(
messages=[message.model_dump() for message in messages],
stream=body["stream"],
)
return response