feat: llama cpp pipeline

This commit is contained in:
Timothy J. Baek 2024-05-21 22:43:43 -07:00
parent b3bb653f46
commit 62630de0f9
2 changed files with 55 additions and 2 deletions

10
main.py
View File

@ -146,6 +146,10 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
if isinstance(res, Iterator):
for line in res:
if isinstance(line, BaseModel):
line = line.model_dump_json()
line = f"data: {line}"
try:
line = line.decode("utf-8")
except:
@ -189,18 +193,20 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
if isinstance(res, dict):
return res
elif isinstance(res, BaseModel):
return res.model_dump()
else:
message = ""
if isinstance(res, str):
message = res
elif isinstance(res, Generator):
if isinstance(res, Generator):
for stream in res:
message = f"{message}{stream}"
logging.info(f"stream:false:{message}")
return {
"id": f"{form_data.model}-{str(uuid.uuid4())}",
"object": "chat.completion",

View File

@ -0,0 +1,47 @@
from typing import List, Union, Generator, Iterator
from schemas import OpenAIChatMessage
class Pipeline:
def __init__(self):
# Optionally, you can set the id and name of the pipeline.
self.id = "llama_cpp_pipeline"
self.name = "Llama C++ Pipeline"
self.llm = None
pass
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
from llama_cpp import Llama
self.llm = Llama(
model_path="./models/llama3.gguf",
# n_gpu_layers=-1, # Uncomment to use GPU acceleration
# seed=1337, # Uncomment to set a specific seed
# n_ctx=2048, # Uncomment to increase the context window
)
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
def get_response(
self, user_message: str, messages: List[OpenAIChatMessage], body: dict
) -> Union[str, Generator, Iterator]:
# This is where you can add your custom pipelines like RAG.'
print(f"get_response:{__name__}")
print(messages)
print(user_message)
print(body)
response = self.llm.create_chat_completion_openai_v1(
messages=[message.model_dump() for message in messages],
stream=body["stream"],
)
return response