from typing import List, Union, Generator from schemas import OpenAIChatMessage from llama_index.embeddings.ollama import OllamaEmbedding from llama_index.llms.openai import OpenAI from llama_index.core import Settings ollama_embedding = OllamaEmbedding( model_name="nomic-embed-text", base_url="http://localhost:11434", ) Settings.embed_model = ollama_embedding Settings.llm = OpenAI( temperature=0, model="llama3", api_key="none", api_base="http://localhost:11434" ) from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("./data").load_data() index = VectorStoreIndex.from_documents(documents) def get_response( user_message: str, messages: List[OpenAIChatMessage] ) -> Union[str, Generator]: # This is where you can add your custom RAG pipeline. # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response. print(messages) print(user_message) query_engine = index.as_query_engine(streaming=True) response = query_engine.query(user_message) return response.response_gen