mirror of
https://github.com/open-webui/pipelines
synced 2025-05-12 00:20:48 +00:00
Merge branch 'open-webui:main' into routellm-pipeline
This commit is contained in:
commit
351c32c34e
@ -11,6 +11,7 @@ requirements: langfuse
|
||||
from typing import List, Optional
|
||||
from schemas import OpenAIChatMessage
|
||||
import os
|
||||
import uuid
|
||||
|
||||
from utils.pipelines.main import get_last_user_message, get_last_assistant_message
|
||||
from pydantic import BaseModel
|
||||
@ -20,64 +21,36 @@ from langfuse.api.resources.commons.errors.unauthorized_error import Unauthorize
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves
|
||||
secret_key: str
|
||||
public_key: str
|
||||
host: str
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
self.type = "filter"
|
||||
|
||||
# Optionally, you can set the id and name of the pipeline.
|
||||
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||
# self.id = "langfuse_filter_pipeline"
|
||||
self.name = "Langfuse Filter"
|
||||
|
||||
# Initialize
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"pipelines": ["*"],
|
||||
"secret_key": os.getenv("LANGFUSE_SECRET_KEY", "your-secret-key-here"),
|
||||
"public_key": os.getenv("LANGFUSE_PUBLIC_KEY", "your-public-key-here"),
|
||||
"host": os.getenv("LANGFUSE_HOST", "https://cloud.langfuse.com"),
|
||||
}
|
||||
)
|
||||
|
||||
self.langfuse = None
|
||||
self.chat_generations = {}
|
||||
pass
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
self.set_langfuse()
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
# This function is called when the server is stopped.
|
||||
print(f"on_shutdown:{__name__}")
|
||||
self.langfuse.flush()
|
||||
pass
|
||||
|
||||
async def on_valves_updated(self):
|
||||
# This function is called when the valves are updated.
|
||||
|
||||
self.set_langfuse()
|
||||
pass
|
||||
|
||||
def set_langfuse(self):
|
||||
try:
|
||||
@ -97,6 +70,22 @@ class Pipeline:
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
print(f"inlet:{__name__}")
|
||||
print(f"Received body: {body}")
|
||||
print(f"User: {user}")
|
||||
|
||||
# Check for presence of required keys and generate chat_id if missing
|
||||
if "chat_id" not in body:
|
||||
unique_id = f"SYSTEM MESSAGE {uuid.uuid4()}"
|
||||
body["chat_id"] = unique_id
|
||||
print(f"chat_id was missing, set to: {unique_id}")
|
||||
|
||||
required_keys = ["model", "messages"]
|
||||
missing_keys = [key for key in required_keys if key not in body]
|
||||
|
||||
if missing_keys:
|
||||
error_message = f"Error: Missing keys in the request body: {', '.join(missing_keys)}"
|
||||
print(error_message)
|
||||
raise ValueError(error_message)
|
||||
|
||||
trace = self.langfuse.trace(
|
||||
name=f"filter:{__name__}",
|
||||
@ -128,9 +117,6 @@ class Pipeline:
|
||||
user_message = get_last_user_message(body["messages"])
|
||||
generated_message = get_last_assistant_message(body["messages"])
|
||||
|
||||
# Update usage cost based on the length of the input and output messages
|
||||
# Below does not reflect the actual cost of the API
|
||||
# You can adjust the cost based on your requirements
|
||||
generation.end(
|
||||
output=generated_message,
|
||||
usage={
|
||||
|
@ -2,7 +2,7 @@
|
||||
title: Google GenAI Manifold Pipeline
|
||||
author: Marc Lopez (refactor by justinh-rahb)
|
||||
date: 2024-06-06
|
||||
version: 1.2
|
||||
version: 1.3
|
||||
license: MIT
|
||||
description: A pipeline for generating text using Google's GenAI models in Open-WebUI.
|
||||
requirements: google-generativeai
|
||||
@ -127,11 +127,14 @@ class Pipeline:
|
||||
"role": "user" if message["role"] == "user" else "model",
|
||||
"parts": [{"text": message["content"]}]
|
||||
})
|
||||
|
||||
if system_message:
|
||||
contents.insert(0, {"role": "user", "parts": [{"text": f"System: {system_message}"}]})
|
||||
|
||||
model = genai.GenerativeModel(model_name=model_id)
|
||||
|
||||
if "gemini-1.5" in model_id:
|
||||
model = genai.GenerativeModel(model_name=model_id, system_instruction=system_message)
|
||||
else:
|
||||
if system_message:
|
||||
contents.insert(0, {"role": "user", "parts": [{"text": f"System: {system_message}"}]})
|
||||
|
||||
model = genai.GenerativeModel(model_name=model_id)
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
temperature=body.get("temperature", 0.7),
|
||||
|
@ -2,7 +2,7 @@
|
||||
title: LiteLLM Manifold Pipeline
|
||||
author: open-webui
|
||||
date: 2024-05-30
|
||||
version: 1.0
|
||||
version: 1.0.1
|
||||
license: MIT
|
||||
description: A manifold pipeline that uses LiteLLM.
|
||||
"""
|
||||
@ -46,12 +46,15 @@ class Pipeline:
|
||||
"LITELLM_PIPELINE_DEBUG": os.getenv("LITELLM_PIPELINE_DEBUG", False),
|
||||
}
|
||||
)
|
||||
self.pipelines = []
|
||||
# Get models on initialization
|
||||
self.pipelines = self.get_litellm_models()
|
||||
pass
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
# Get models on startup
|
||||
self.pipelines = self.get_litellm_models()
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
@ -85,7 +88,7 @@ class Pipeline:
|
||||
for model in models["data"]
|
||||
]
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
print(f"Error fetching models from LiteLLM: {e}")
|
||||
return [
|
||||
{
|
||||
"id": "error",
|
||||
@ -93,6 +96,7 @@ class Pipeline:
|
||||
},
|
||||
]
|
||||
else:
|
||||
print("LITELLM_BASE_URL not set. Please configure it in the valves.")
|
||||
return []
|
||||
|
||||
def pipe(
|
||||
|
@ -3,6 +3,9 @@ from pydantic import BaseModel
|
||||
import os
|
||||
import requests
|
||||
|
||||
from utils.pipelines.main import pop_system_message
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
PERPLEXITY_API_BASE_URL: str = "https://api.perplexity.ai"
|
||||
@ -26,14 +29,28 @@ class Pipeline:
|
||||
|
||||
# List of models
|
||||
self.pipelines = [
|
||||
{"id": "llama-3-sonar-large-32k-online", "name": "Llama 3 Sonar Large 32K Online"},
|
||||
{"id": "llama-3-sonar-small-32k-online", "name": "Llama 3 Sonar Small 32K Online"},
|
||||
{"id": "llama-3-sonar-large-32k-chat", "name": "Llama 3 Sonar Large 32K Chat"},
|
||||
{"id": "llama-3-sonar-small-32k-chat", "name": "Llama 3 Sonar Small 32K Chat"},
|
||||
{"id": "llama-3-8b-instruct", "name": "Llama 3 8B Instruct"},
|
||||
{"id": "llama-3-70b-instruct", "name": "Llama 3 70B Instruct"},
|
||||
{"id": "mixtral-8x7b-instruct", "name": "Mixtral 8x7B Instruct"},
|
||||
{"id": "related", "name": "Related"}
|
||||
{
|
||||
"id": "llama-3.1-sonar-large-128k-online",
|
||||
"name": "Llama 3.1 Sonar Large 128k Online"
|
||||
},
|
||||
{
|
||||
"id": "llama-3.1-sonar-small-128k-online",
|
||||
"name": "Llama 3.1 Sonar Small 128k Online"
|
||||
},
|
||||
{
|
||||
"id": "llama-3.1-sonar-large-128k-chat",
|
||||
"name": "Llama 3.1 Sonar Large 128k Chat"
|
||||
},
|
||||
{
|
||||
"id": "llama-3.1-sonar-small-128k-chat",
|
||||
"name": "Llama 3.1 Sonar Small 128k Chat"
|
||||
},
|
||||
{
|
||||
"id": "llama-3.1-8b-instruct", "name": "Llama 3.1 8B Instruct"
|
||||
},
|
||||
{
|
||||
"id": "llama-3.1-70b-instruct", "name": "Llama 3.1 70B Instruct"
|
||||
}
|
||||
]
|
||||
pass
|
||||
|
||||
@ -59,6 +76,12 @@ class Pipeline:
|
||||
# This is where you can add your custom pipelines like RAG.
|
||||
print(f"pipe:{__name__}")
|
||||
|
||||
system_message, messages = pop_system_message(messages)
|
||||
system_prompt = "You are a helpful assistant."
|
||||
if system_message is not None:
|
||||
system_prompt = system_message["content"]
|
||||
|
||||
print(system_prompt)
|
||||
print(messages)
|
||||
print(user_message)
|
||||
|
||||
@ -71,8 +94,8 @@ class Pipeline:
|
||||
payload = {
|
||||
"model": model_id,
|
||||
"messages": [
|
||||
{"role": "system", "content": "Be precise and concise."},
|
||||
{"role": "user", "content": user_message}
|
||||
{"role": "system", "content": system_prompt},
|
||||
*messages
|
||||
],
|
||||
"stream": body.get("stream", True),
|
||||
"return_citations": True,
|
||||
@ -124,17 +147,21 @@ class Pipeline:
|
||||
except Exception as e:
|
||||
return f"Error: {e}"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser(description="Perplexity API Client")
|
||||
parser.add_argument("--api-key", type=str, required=True, help="API key for Perplexity")
|
||||
parser.add_argument("--prompt", type=str, required=True, help="Prompt to send to the Perplexity API")
|
||||
parser.add_argument("--api-key", type=str, required=True,
|
||||
help="API key for Perplexity")
|
||||
parser.add_argument("--prompt", type=str, required=True,
|
||||
help="Prompt to send to the Perplexity API")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
pipeline = Pipeline()
|
||||
pipeline.valves.PERPLEXITY_API_KEY = args.api_key
|
||||
response = pipeline.pipe(user_message=args.prompt, model_id="llama-3-sonar-large-32k-online", messages=[], body={"stream": False})
|
||||
response = pipeline.pipe(
|
||||
user_message=args.prompt, model_id="llama-3-sonar-large-32k-online", messages=[], body={"stream": False})
|
||||
|
||||
print("Response:", response)
|
||||
|
38
main.py
38
main.py
@ -26,6 +26,7 @@ import time
|
||||
import json
|
||||
import uuid
|
||||
import sys
|
||||
import subprocess
|
||||
|
||||
|
||||
from config import API_KEY, PIPELINES_DIR
|
||||
@ -105,12 +106,45 @@ def get_all_pipelines():
|
||||
|
||||
return pipelines
|
||||
|
||||
def parse_frontmatter(content):
|
||||
frontmatter = {}
|
||||
for line in content.split('\n'):
|
||||
if ':' in line:
|
||||
key, value = line.split(':', 1)
|
||||
frontmatter[key.strip().lower()] = value.strip()
|
||||
return frontmatter
|
||||
|
||||
def install_frontmatter_requirements(requirements):
|
||||
if requirements:
|
||||
req_list = [req.strip() for req in requirements.split(',')]
|
||||
for req in req_list:
|
||||
print(f"Installing requirement: {req}")
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", req])
|
||||
else:
|
||||
print("No requirements found in frontmatter.")
|
||||
|
||||
async def load_module_from_path(module_name, module_path):
|
||||
spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
|
||||
try:
|
||||
# Read the module content
|
||||
with open(module_path, 'r') as file:
|
||||
content = file.read()
|
||||
|
||||
# Parse frontmatter
|
||||
frontmatter = {}
|
||||
if content.startswith('"""'):
|
||||
end = content.find('"""', 3)
|
||||
if end != -1:
|
||||
frontmatter_content = content[3:end]
|
||||
frontmatter = parse_frontmatter(frontmatter_content)
|
||||
|
||||
# Install requirements if specified
|
||||
if 'requirements' in frontmatter:
|
||||
install_frontmatter_requirements(frontmatter['requirements'])
|
||||
|
||||
# Load the module
|
||||
spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
print(f"Loaded module: {module.__name__}")
|
||||
if hasattr(module, "Pipeline"):
|
||||
|
Loading…
Reference in New Issue
Block a user