mirror of
https://github.com/open-webui/pipelines
synced 2025-05-13 00:50:44 +00:00
177 lines
6.6 KiB
Python
177 lines
6.6 KiB
Python
"""
|
|
title: Google GenAI Manifold Pipeline
|
|
author: Marc Lopez (refactor by justinh-rahb)
|
|
date: 2024-06-06
|
|
version: 1.3
|
|
license: MIT
|
|
description: A pipeline for generating text using Google's GenAI models in Open-WebUI.
|
|
requirements: google-generativeai
|
|
environment_variables: GOOGLE_API_KEY
|
|
"""
|
|
|
|
from typing import List, Union, Iterator
|
|
import os
|
|
|
|
from pydantic import BaseModel, Field
|
|
|
|
import google.generativeai as genai
|
|
from google.generativeai.types import GenerationConfig
|
|
|
|
|
|
class Pipeline:
|
|
"""Google GenAI pipeline"""
|
|
|
|
class Valves(BaseModel):
|
|
"""Options to change from the WebUI"""
|
|
|
|
GOOGLE_API_KEY: str = ""
|
|
USE_PERMISSIVE_SAFETY: bool = Field(default=False)
|
|
|
|
def __init__(self):
|
|
self.type = "manifold"
|
|
self.id = "google_genai"
|
|
self.name = "Google: "
|
|
|
|
self.valves = self.Valves(**{
|
|
"GOOGLE_API_KEY": os.getenv("GOOGLE_API_KEY", ""),
|
|
"USE_PERMISSIVE_SAFETY": False
|
|
})
|
|
self.pipelines = []
|
|
|
|
genai.configure(api_key=self.valves.GOOGLE_API_KEY)
|
|
self.update_pipelines()
|
|
|
|
async def on_startup(self) -> None:
|
|
"""This function is called when the server is started."""
|
|
|
|
print(f"on_startup:{__name__}")
|
|
genai.configure(api_key=self.valves.GOOGLE_API_KEY)
|
|
self.update_pipelines()
|
|
|
|
async def on_shutdown(self) -> None:
|
|
"""This function is called when the server is stopped."""
|
|
|
|
print(f"on_shutdown:{__name__}")
|
|
|
|
async def on_valves_updated(self) -> None:
|
|
"""This function is called when the valves are updated."""
|
|
|
|
print(f"on_valves_updated:{__name__}")
|
|
genai.configure(api_key=self.valves.GOOGLE_API_KEY)
|
|
self.update_pipelines()
|
|
|
|
def update_pipelines(self) -> None:
|
|
"""Update the available models from Google GenAI"""
|
|
|
|
if self.valves.GOOGLE_API_KEY:
|
|
try:
|
|
models = genai.list_models()
|
|
self.pipelines = [
|
|
{
|
|
"id": model.name[7:], # the "models/" part messeses up the URL
|
|
"name": model.display_name,
|
|
}
|
|
for model in models
|
|
if "generateContent" in model.supported_generation_methods
|
|
if model.name[:7] == "models/"
|
|
]
|
|
except Exception:
|
|
self.pipelines = [
|
|
{
|
|
"id": "error",
|
|
"name": "Could not fetch models from Google, please update the API Key in the valves.",
|
|
}
|
|
]
|
|
else:
|
|
self.pipelines = []
|
|
|
|
def pipe(
|
|
self, user_message: str, model_id: str, messages: List[dict], body: dict
|
|
) -> Union[str, Iterator]:
|
|
if not self.valves.GOOGLE_API_KEY:
|
|
return "Error: GOOGLE_API_KEY is not set"
|
|
|
|
try:
|
|
genai.configure(api_key=self.valves.GOOGLE_API_KEY)
|
|
|
|
if model_id.startswith("google_genai."):
|
|
model_id = model_id[12:]
|
|
model_id = model_id.lstrip(".")
|
|
|
|
if not model_id.startswith("gemini-"):
|
|
return f"Error: Invalid model name format: {model_id}"
|
|
|
|
print(f"Pipe function called for model: {model_id}")
|
|
print(f"Stream mode: {body.get('stream', False)}")
|
|
|
|
system_message = next((msg["content"] for msg in messages if msg["role"] == "system"), None)
|
|
|
|
contents = []
|
|
for message in messages:
|
|
if message["role"] != "system":
|
|
if isinstance(message.get("content"), list):
|
|
parts = []
|
|
for content in message["content"]:
|
|
if content["type"] == "text":
|
|
parts.append({"text": content["text"]})
|
|
elif content["type"] == "image_url":
|
|
image_url = content["image_url"]["url"]
|
|
if image_url.startswith("data:image"):
|
|
image_data = image_url.split(",")[1]
|
|
parts.append({"inline_data": {"mime_type": "image/jpeg", "data": image_data}})
|
|
else:
|
|
parts.append({"image_url": image_url})
|
|
contents.append({"role": message["role"], "parts": parts})
|
|
else:
|
|
contents.append({
|
|
"role": "user" if message["role"] == "user" else "model",
|
|
"parts": [{"text": message["content"]}]
|
|
})
|
|
|
|
if "gemini-1.5" in model_id:
|
|
model = genai.GenerativeModel(model_name=model_id, system_instruction=system_message)
|
|
else:
|
|
if system_message:
|
|
contents.insert(0, {"role": "user", "parts": [{"text": f"System: {system_message}"}]})
|
|
|
|
model = genai.GenerativeModel(model_name=model_id)
|
|
|
|
generation_config = GenerationConfig(
|
|
temperature=body.get("temperature", 0.7),
|
|
top_p=body.get("top_p", 0.9),
|
|
top_k=body.get("top_k", 40),
|
|
max_output_tokens=body.get("max_tokens", 8192),
|
|
stop_sequences=body.get("stop", []),
|
|
)
|
|
|
|
if self.valves.USE_PERMISSIVE_SAFETY:
|
|
safety_settings = {
|
|
genai.types.HarmCategory.HARM_CATEGORY_HARASSMENT: genai.types.HarmBlockThreshold.BLOCK_NONE,
|
|
genai.types.HarmCategory.HARM_CATEGORY_HATE_SPEECH: genai.types.HarmBlockThreshold.BLOCK_NONE,
|
|
genai.types.HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: genai.types.HarmBlockThreshold.BLOCK_NONE,
|
|
genai.types.HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: genai.types.HarmBlockThreshold.BLOCK_NONE,
|
|
}
|
|
else:
|
|
safety_settings = body.get("safety_settings")
|
|
|
|
response = model.generate_content(
|
|
contents,
|
|
generation_config=generation_config,
|
|
safety_settings=safety_settings,
|
|
stream=body.get("stream", False),
|
|
)
|
|
|
|
if body.get("stream", False):
|
|
return self.stream_response(response)
|
|
else:
|
|
return response.text
|
|
|
|
except Exception as e:
|
|
print(f"Error generating content: {e}")
|
|
return f"An error occurred: {str(e)}"
|
|
|
|
def stream_response(self, response):
|
|
for chunk in response:
|
|
if chunk.text:
|
|
yield chunk.text
|