mirror of
https://github.com/deepseek-ai/ESFT
synced 2025-01-22 10:36:24 +00:00
add training code
This commit is contained in:
parent
26b4fc4a8a
commit
809d0e377e
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
__pycache__/
|
31
configs/base.yaml
Normal file
31
configs/base.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
seed: 5934875
|
||||
# Model settings
|
||||
seq_length: 4096 # Maximum sequence length
|
||||
|
||||
# Data settings
|
||||
per_device_batch_size: 1
|
||||
n_device: 8 # Number of devices
|
||||
|
||||
# Training settings
|
||||
optim: adamw_torch_fused
|
||||
steps: 500 # Number of training steps
|
||||
learning_rate: 0.00001 # Learning rate
|
||||
weight_decay: 0.1 # Weight decay for optimizer
|
||||
warmup_steps: 0 # Number of warmup steps for learning rate scheduler
|
||||
logging_steps: 10 # Log every X steps
|
||||
adam_beta1: 0.9
|
||||
adam_beta2: 0.95
|
||||
random_concat_ratio: 0.2 # Ratio of random concatenation
|
||||
|
||||
|
||||
# Evaluation settings
|
||||
eval_steps: 100 # Evaluate every X steps
|
||||
save_steps: 100 # Save model every X steps
|
||||
|
||||
# Tokenizer settings
|
||||
|
||||
# Additional settings (if needed)
|
||||
gradient_checkpointing: true
|
||||
gradient_accumulation_steps: 16 # Number of updates steps to accumulate before performing a backward/update pass
|
||||
max_grad_norm: 1.0 # Max gradient norm for gradient clipping
|
||||
ep_size: 2
|
0
deepseek/__init__.py
Normal file
0
deepseek/__init__.py
Normal file
206
deepseek/configuration_deepseek.py
Normal file
206
deepseek/configuration_deepseek.py
Normal file
@ -0,0 +1,206 @@
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from transformers.utils import logging
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||||
class DeepseekV2Config(PretrainedConfig):
|
||||
r"""
|
||||
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the DeepSeek-V2.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 102400):
|
||||
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`DeepseekV2Model`]
|
||||
hidden_size (`int`, *optional*, defaults to 4096):
|
||||
Dimension of the hidden representations.
|
||||
intermediate_size (`int`, *optional*, defaults to 11008):
|
||||
Dimension of the MLP representations.
|
||||
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
||||
Dimension of the MoE representations.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the Transformer decoder.
|
||||
num_attention_heads (`int`, *optional*, defaults to 32):
|
||||
Number of attention heads for each attention layer in the Transformer decoder.
|
||||
n_shared_experts (`int`, *optional*, defaults to None):
|
||||
Number of shared experts, None means dense model.
|
||||
n_routed_experts (`int`, *optional*, defaults to None):
|
||||
Number of routed experts, None means dense model.
|
||||
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
||||
Scaling factor or routed experts.
|
||||
topk_method (`str`, *optional*, defaults to `gready`):
|
||||
Topk method used in routed gate.
|
||||
n_group (`int`, *optional*, defaults to None):
|
||||
Number of groups for routed experts.
|
||||
topk_group (`int`, *optional*, defaults to None):
|
||||
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
||||
num_experts_per_tok (`int`, *optional*, defaults to None):
|
||||
Number of selected experts, None means dense model.
|
||||
moe_layer_freq (`int`, *optional*, defaults to 1):
|
||||
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
||||
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
||||
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
||||
\--k dense layers--/
|
||||
norm_topk_prob (`bool`, *optional*, defaults to False):
|
||||
Whether to normalize the weights of the routed experts.
|
||||
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
||||
Method of computing expert weights.
|
||||
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
||||
Auxiliary loss weight coefficient.
|
||||
seq_aux = (`bool`, *optional*, defaults to True):
|
||||
Whether to compute the auxiliary loss for each individual sample.
|
||||
num_key_value_heads (`int`, *optional*):
|
||||
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||||
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||||
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||||
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||||
by meanpooling all the original heads within that group. For more details checkout [this
|
||||
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||||
`num_attention_heads`.
|
||||
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||||
The maximum sequence length that this model might ever be used with.
|
||||
initializer_range (`float`, *optional*, defaults to 0.02):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||||
The epsilon used by the rms normalization layers.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||||
relevant if `config.is_decoder=True`.
|
||||
pad_token_id (`int`, *optional*):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 1):
|
||||
Beginning of stream token id.
|
||||
eos_token_id (`int`, *optional*, defaults to 2):
|
||||
End of stream token id.
|
||||
pretraining_tp (`int`, *optional*, defaults to 1):
|
||||
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||||
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
||||
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
||||
issue](https://github.com/pytorch/pytorch/issues/76232).
|
||||
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||||
Whether to tie weight embeddings
|
||||
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||||
The base period of the RoPE embeddings.
|
||||
rope_scaling (`Dict`, *optional*):
|
||||
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||||
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||||
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||||
`max_position_embeddings` to the expected new maximum.
|
||||
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||||
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||||
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||||
The dropout ratio for the attention probabilities.
|
||||
|
||||
```python
|
||||
>>> from transformers import DeepseekV2Model, DeepseekV2Config
|
||||
|
||||
>>> # Initializing a Deepseek-V2 style configuration
|
||||
>>> configuration = DeepseekV2Config()
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "deepseek_v2"
|
||||
keys_to_ignore_at_inference = ["past_key_values"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=102400,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
moe_intermediate_size = 1407,
|
||||
num_hidden_layers=30,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=32,
|
||||
n_shared_experts = None,
|
||||
n_routed_experts = None,
|
||||
ep_size = 1,
|
||||
routed_scaling_factor = 1.0,
|
||||
kv_lora_rank = 512,
|
||||
q_lora_rank = 1536,
|
||||
qk_rope_head_dim = 64,
|
||||
v_head_dim = 128,
|
||||
qk_nope_head_dim = 128,
|
||||
topk_method = 'gready',
|
||||
n_group = None,
|
||||
topk_group = None,
|
||||
num_experts_per_tok = None,
|
||||
moe_layer_freq = 1,
|
||||
first_k_dense_replace = 0,
|
||||
norm_topk_prob = False,
|
||||
scoring_func = 'softmax',
|
||||
aux_loss_alpha = 0.001,
|
||||
seq_aux = True,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=100000,
|
||||
eos_token_id=100001,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.n_shared_experts = n_shared_experts
|
||||
self.n_routed_experts = n_routed_experts
|
||||
self.ep_size = ep_size
|
||||
self.routed_scaling_factor = routed_scaling_factor
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.topk_method = topk_method
|
||||
self.n_group = n_group
|
||||
self.topk_group = topk_group
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.moe_layer_freq = moe_layer_freq
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.scoring_func = scoring_func
|
||||
self.aux_loss_alpha = aux_loss_alpha
|
||||
self.seq_aux = seq_aux
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
1918
deepseek/modeling_deepseek.py
Normal file
1918
deepseek/modeling_deepseek.py
Normal file
File diff suppressed because it is too large
Load Diff
33
esft.py
33
esft.py
@ -7,6 +7,8 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
def to_buffer(module, mark_param=True):
|
||||
"""Turns all parameters of a module into buffers."""
|
||||
if module is None:
|
||||
return
|
||||
modules = module.modules()
|
||||
module = next(modules)
|
||||
delattrs = []
|
||||
@ -25,6 +27,8 @@ def to_buffer(module, mark_param=True):
|
||||
|
||||
def to_param(module):
|
||||
"""Turns all buffers of a module into parameterss."""
|
||||
if module is None:
|
||||
return
|
||||
modules = module.modules()
|
||||
module = next(modules)
|
||||
param_list = getattr(module, 'param_list', [])
|
||||
@ -57,7 +61,7 @@ def to_esft(model, adapter_config):
|
||||
to_buffer(model)
|
||||
else:
|
||||
to_param(model)
|
||||
for idx, layer in enumerate(model.layers):
|
||||
for idx, layer in enumerate(model.model.layers):
|
||||
if type(layer.mlp).__name__ != "DeepseekV2MoE":
|
||||
continue
|
||||
if adapter_config.get('shared_experts', False):
|
||||
@ -72,15 +76,25 @@ def to_esft(model, adapter_config):
|
||||
to_buffer(layer.mlp.experts[expert_id])
|
||||
return model
|
||||
|
||||
|
||||
def load_state_dict(folder_path):
|
||||
# 初始化空的 state_dict
|
||||
combined_state_dict = {}
|
||||
|
||||
# 遍历文件夹中的所有文件
|
||||
for file_name in os.listdir(folder_path):
|
||||
if file_name.endswith('.safetensors'):
|
||||
file_path = os.path.join(folder_path, file_name)
|
||||
state_dict = load_file(file_path)
|
||||
combined_state_dict.update(state_dict)
|
||||
|
||||
|
||||
# legacy for loading v1 checkpoints: add prefix "model." for parameters
|
||||
for k in list(combined_state_dict.keys()):
|
||||
if k.startswith("layers"):
|
||||
k_new = "model." + k
|
||||
combined_state_dict[k_new] = combined_state_dict[k]
|
||||
del combined_state_dict[k]
|
||||
|
||||
return combined_state_dict
|
||||
|
||||
|
||||
@ -89,21 +103,24 @@ def load_esft_model(base_model_path, adapter_dir):
|
||||
adapter_state_dict = load_state_dict(adapter_dir)
|
||||
|
||||
# load pretrained model:
|
||||
model, tokenizer = AutoModelForCausalLM.from_pretrained(base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto"), AutoTokenizer.from_pretrained(base_model_path)
|
||||
model, tokenizer = AutoModelForCausalLM.from_pretrained(base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16), AutoTokenizer.from_pretrained(base_model_path)
|
||||
|
||||
to_esft(model.model, adapter_config)
|
||||
model.model.load_state_dict(adapter_state_dict)
|
||||
to_esft(model, adapter_config)
|
||||
model.load_state_dict(adapter_state_dict)
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
def load_base_model(base_model_path):
|
||||
# load pretrained model:
|
||||
model, tokenizer = AutoModelForCausalLM.from_pretrained(base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto"), AutoTokenizer.from_pretrained(base_model_path)
|
||||
model, tokenizer = AutoModelForCausalLM.from_pretrained(base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16), AutoTokenizer.from_pretrained(base_model_path)
|
||||
|
||||
return model, tokenizer
|
||||
|
||||
def add_adapter(base_model, adapter_dir, return_original_states=False):
|
||||
adapter_config = json.load(open(adapter_dir + "/expert_cfg.json"))
|
||||
def add_adapter(base_model, adapter_dir, return_original_states=False, expert_config=None):
|
||||
if expert_config is not None:
|
||||
adapter_config = json.load(open(expert_config))
|
||||
else:
|
||||
adapter_config = json.load(open(adapter_dir + "/expert_cfg.json"))
|
||||
adapter_state_dict = load_state_dict(adapter_dir)
|
||||
|
||||
to_esft(base_model, adapter_config)
|
||||
|
12
scripts/train.sh
Normal file
12
scripts/train.sh
Normal file
@ -0,0 +1,12 @@
|
||||
|
||||
export TOKENIZERS_PARALLELISM=false
|
||||
|
||||
exp_name="test/eval_translation"
|
||||
base_model_path="/hf3fs-jd/prod/deepseek/shared/wangzihan/models/huggingface/vanilla_model"
|
||||
# turn above to for loop
|
||||
python train.py \
|
||||
--base_model_path=${base_model_path} \
|
||||
--expert_config=results/expert_configs/translation.json \
|
||||
--train_dataset=translation \
|
||||
--train_config=configs/base.yaml \
|
||||
--output_dir=results/checkpoints/${exp_name}
|
11
scripts/train_ep.sh
Normal file
11
scripts/train_ep.sh
Normal file
@ -0,0 +1,11 @@
|
||||
|
||||
export TOKENIZERS_PARALLELISM=false
|
||||
|
||||
exp_name="test/eval_translation"
|
||||
base_model_path="/hf3fs-jd/prod/deepseek/shared/wangzihan/models/huggingface/vanilla_model"
|
||||
torchrun --nproc-per-node=8 train_ep.py \
|
||||
--base_model_path=${base_model_path} \
|
||||
--expert_config=results/expert_configs/translation.json \
|
||||
--train_dataset=translation \
|
||||
--train_config=configs/base.yaml \
|
||||
--output_dir=results/checkpoints/${exp_name}
|
117
train.py
Normal file
117
train.py
Normal file
@ -0,0 +1,117 @@
|
||||
import argparse
|
||||
import json
|
||||
import yaml
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
from torch.utils.data import TensorDataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, logging
|
||||
|
||||
from benchmarks import *
|
||||
from utils import get_formatted_input_and_target, get_examples_from_buffer_pad
|
||||
from esft import to_esft
|
||||
from deepseek.modeling_deepseek import DeepseekV2ForCausalLM
|
||||
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--base_model_path", type=str, required=True)
|
||||
parser.add_argument("--expert_config", type=str, required=True)
|
||||
parser.add_argument("--train_dataset", type=str, required=True)
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument("--train_config", type=str, required=True)
|
||||
parser.add_argument("--wandb_api_key", type=str, required=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
expert_config = json.load(open(args.expert_config))
|
||||
output_dir = args.output_dir
|
||||
base_model_path = args.base_model_path
|
||||
config = yaml.safe_load(open(args.train_config))
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
seed = config['seed']
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
random.seed(seed)
|
||||
|
||||
if args.wandb_api_key is not None:
|
||||
import wandb
|
||||
wandb.login(key=args.wandb_api_key)
|
||||
|
||||
# Prepare data
|
||||
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
||||
samples = [json.loads(i) for i in open(f"datasets/train/{args.train_dataset}.jsonl").readlines()]
|
||||
buffer = []
|
||||
for instance in samples:
|
||||
input_ids, target_ids = get_formatted_input_and_target(instance['messages'], tokenizer, -100)
|
||||
buffer.append((input_ids, target_ids))
|
||||
seq_length = config['seq_length']
|
||||
random_concat_ratio = config['random_concat_ratio']
|
||||
concated_examples = get_examples_from_buffer_pad(buffer, seq_length, tokenizer, random_concat_ratio)
|
||||
|
||||
dataset = TensorDataset(concated_examples['input_ids'], concated_examples['labels'])
|
||||
train_dataset, valid_dataset = torch.utils.data.random_split(dataset, [int(len(dataset) * 0.98), len(dataset) - int(len(dataset) * 0.98)])
|
||||
|
||||
# Training arguments
|
||||
training_args = TrainingArguments(
|
||||
output_dir=output_dir,
|
||||
max_steps=config['steps'],
|
||||
per_device_train_batch_size=config['per_device_batch_size'],
|
||||
per_device_eval_batch_size=config['per_device_batch_size'],
|
||||
warmup_steps=config['warmup_steps'],
|
||||
weight_decay=config['weight_decay'],
|
||||
logging_dir=f"{output_dir}/logs",
|
||||
logging_steps=config['logging_steps'],
|
||||
save_steps=config['save_steps'],
|
||||
eval_strategy="steps",
|
||||
eval_steps=config['eval_steps'],
|
||||
gradient_accumulation_steps=config['gradient_accumulation_steps'],
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="loss",
|
||||
greater_is_better=False,
|
||||
bf16=True,
|
||||
lr_scheduler_type='constant',
|
||||
save_total_limit=5,
|
||||
learning_rate=config['learning_rate'],
|
||||
optim=config['optim'],
|
||||
adam_beta1=config['adam_beta1'],
|
||||
adam_beta2=config['adam_beta2'],
|
||||
gradient_checkpointing=config['gradient_checkpointing'],
|
||||
gradient_checkpointing_kwargs={"use_reentrant": False} if config['gradient_checkpointing'] else {}, # if set to True, backward will raise bug
|
||||
)
|
||||
|
||||
def data_collator(data):
|
||||
input_ids = torch.stack([item[0] for item in data])
|
||||
labels = torch.stack([item[1] for item in data])
|
||||
return {"input_ids": input_ids, "labels": labels}
|
||||
|
||||
|
||||
model = DeepseekV2ForCausalLM.from_pretrained(base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2")
|
||||
to_esft(model, expert_config)
|
||||
|
||||
# Initialize Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=valid_dataset,
|
||||
data_collator=data_collator,
|
||||
)
|
||||
# Training
|
||||
if os.path.exists(output_dir) and len(os.listdir(output_dir)) > 1: # has checkpoints already
|
||||
trainer.train(resume_from_checkpoint=True)
|
||||
else:
|
||||
trainer.train()
|
||||
|
||||
# Save the model and tokenizer
|
||||
trainer.save_model(output_dir + "/last_checkpoint")
|
||||
tokenizer.save_pretrained(output_dir + "/last_checkpoint")
|
||||
|
||||
print("Training complete")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
154
train_ep.py
Normal file
154
train_ep.py
Normal file
@ -0,0 +1,154 @@
|
||||
import argparse
|
||||
import json
|
||||
import yaml
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from types import MethodType
|
||||
from torch.utils.data import TensorDataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, logging
|
||||
|
||||
from benchmarks import *
|
||||
from utils import get_formatted_input_and_target, get_examples_from_buffer_pad, init_parallel_groups
|
||||
from esft import to_esft
|
||||
from deepseek.modeling_deepseek import DeepseekV2ForCausalLM
|
||||
|
||||
|
||||
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
||||
os.environ["NCCL_AVOID_RECORD_STREAMS"] = "1"
|
||||
logging.set_verbosity_error()
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
parser.add_argument("--base_model_path", type=str, required=True)
|
||||
parser.add_argument("--expert_config", type=str, required=True)
|
||||
parser.add_argument("--train_dataset", type=str, required=True)
|
||||
parser.add_argument("--output_dir", type=str, required=True)
|
||||
parser.add_argument("--train_config", type=str, required=True)
|
||||
parser.add_argument("--wandb_api_key", type=str, required=False)
|
||||
args = parser.parse_args()
|
||||
|
||||
expert_config = json.load(open(args.expert_config))
|
||||
output_dir = args.output_dir
|
||||
base_model_path = args.base_model_path
|
||||
config = yaml.safe_load(open(args.train_config))
|
||||
os.makedirs(args.output_dir, exist_ok=True)
|
||||
|
||||
seed = config['seed']
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
random.seed(seed)
|
||||
|
||||
if args.wandb_api_key is not None:
|
||||
import wandb
|
||||
wandb.login(key=args.wandb_api_key)
|
||||
|
||||
ep_size = config.get("ep_size", 1)
|
||||
world_size, local_rank, ep_group, edp_group = init_parallel_groups(ep_size)
|
||||
edp_size = world_size // ep_size
|
||||
|
||||
# Prepare data
|
||||
tokenizer = AutoTokenizer.from_pretrained(base_model_path)
|
||||
samples = [json.loads(i) for i in open(f"datasets/train/{args.train_dataset}.jsonl").readlines()]
|
||||
buffer = []
|
||||
for instance in samples:
|
||||
input_ids, target_ids = get_formatted_input_and_target(instance['messages'], tokenizer, -100)
|
||||
buffer.append((input_ids, target_ids))
|
||||
seq_length = config['seq_length']
|
||||
random_concat_ratio = config['random_concat_ratio']
|
||||
concated_examples = get_examples_from_buffer_pad(buffer, seq_length, tokenizer, random_concat_ratio)
|
||||
|
||||
dataset = TensorDataset(concated_examples['input_ids'], concated_examples['labels'])
|
||||
train_dataset, valid_dataset = torch.utils.data.random_split(dataset, [int(len(dataset) * 0.98), len(dataset) - int(len(dataset) * 0.98)])
|
||||
|
||||
# Training arguments
|
||||
training_args = TrainingArguments(
|
||||
output_dir=output_dir,
|
||||
max_steps=config['steps'],
|
||||
per_device_train_batch_size=config['per_device_batch_size'],
|
||||
per_device_eval_batch_size=config['per_device_batch_size'],
|
||||
warmup_steps=config['warmup_steps'],
|
||||
weight_decay=config['weight_decay'],
|
||||
logging_dir=f"{output_dir}/logs",
|
||||
logging_steps=config['logging_steps'],
|
||||
save_steps=config['save_steps'],
|
||||
eval_strategy="steps",
|
||||
eval_steps=config['eval_steps'],
|
||||
gradient_accumulation_steps=config['gradient_accumulation_steps'],
|
||||
load_best_model_at_end=True,
|
||||
metric_for_best_model="loss",
|
||||
greater_is_better=False,
|
||||
bf16=True,
|
||||
lr_scheduler_type='constant',
|
||||
save_total_limit=5,
|
||||
learning_rate=config['learning_rate'],
|
||||
optim=config['optim'],
|
||||
adam_beta1=config['adam_beta1'],
|
||||
adam_beta2=config['adam_beta2'],
|
||||
disable_tqdm=False,
|
||||
gradient_checkpointing=config['gradient_checkpointing'],
|
||||
gradient_checkpointing_kwargs={"use_reentrant": False} if config['gradient_checkpointing'] else {}, # if set to True, backward will raise bug
|
||||
)
|
||||
|
||||
def data_collator(data):
|
||||
input_ids = torch.stack([item[0] for item in data])
|
||||
labels = torch.stack([item[1] for item in data])
|
||||
return {"input_ids": input_ids, "labels": labels}
|
||||
|
||||
|
||||
model = DeepseekV2ForCausalLM.from_pretrained(base_model_path, trust_remote_code=True, torch_dtype=torch.bfloat16,
|
||||
ep_size=ep_size, attn_implementation="flash_attention_2")
|
||||
model._ddp_params_and_buffers_to_ignore = [n for n, _ in model.named_parameters() if ".expert" in n] # we manage grad synchronization of expert parameters
|
||||
to_esft(model, expert_config)
|
||||
model.dummy = torch.nn.Parameter(torch.zeros(1, dtype=model.dtype)) # prevent DDP from having no trainable parameters
|
||||
model._keys_to_ignore_on_save = ["dummy"]
|
||||
expert_params = [p for n, p in model.named_parameters() if p.requires_grad and ".expert" in n]
|
||||
for layer in model.model.layers:
|
||||
if type(layer.mlp).__name__ != "DeepseekV2MoE":
|
||||
continue
|
||||
layer.mlp.ep_group = ep_group
|
||||
|
||||
# Initialize Trainer
|
||||
trainer = Trainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=valid_dataset,
|
||||
data_collator=data_collator,
|
||||
)
|
||||
|
||||
accelerator = trainer.accelerator
|
||||
backward = accelerator.backward
|
||||
def custom_backward(self, loss, **kwargs):
|
||||
backward(loss, **kwargs)
|
||||
if not self.sync_gradients or edp_size == 1:
|
||||
return
|
||||
return
|
||||
for p in expert_params:
|
||||
g = p.grad if p.grad is not None else torch.zeros_like(p)
|
||||
dist.all_reduce(g, op=dist.ReduceOp.AVG, group=edp_group)
|
||||
if p.grad is not g:
|
||||
p.grad = g
|
||||
accelerator.backward = MethodType(custom_backward, accelerator)
|
||||
|
||||
# Training
|
||||
ckpt_path = f"{output_dir}/last_checkpoint_ep{local_rank}"
|
||||
if os.path.exists(output_dir) and len(os.listdir(output_dir)) > 1: # has checkpoints already
|
||||
trainer.train(resume_from_checkpoint=ckpt_path)
|
||||
else:
|
||||
trainer.train()
|
||||
|
||||
# Save the model and tokenizer
|
||||
if local_rank == 0:
|
||||
trainer.save_model(ckpt_path)
|
||||
tokenizer.save_pretrained(ckpt_path)
|
||||
elif 0 < local_rank < ep_size:
|
||||
model.save_pretrained(ckpt_path)
|
||||
|
||||
print("Training complete")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
58
utils.py
58
utils.py
@ -1,3 +1,7 @@
|
||||
import os
|
||||
import random
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
# given a message object, convert to prompt and response
|
||||
|
||||
PROMPT_USER: str = 'User: {input}\n\n'
|
||||
@ -38,3 +42,57 @@ def get_formatted_input_and_target(messages, tokenizer, IGNORE_TOKEN_ID=-100, ma
|
||||
assert False, f"Unknown role: {message['role']}"
|
||||
|
||||
return [input_ids, target_ids]
|
||||
|
||||
|
||||
def get_examples_from_buffer_pad(buffer, seq_length, tokenizer, random_concat_ratio, IGNORE_TOKEN_ID=-100):
|
||||
all_input_ids_list, all_target_ids_list = [], []
|
||||
all_input_ids, all_target_ids = [], []
|
||||
|
||||
for input_ids, target_ids in buffer:
|
||||
if len(input_ids) > seq_length - len(all_input_ids):
|
||||
input_ids = input_ids[-(seq_length - len(all_input_ids)):]
|
||||
target_ids = target_ids[-(seq_length - len(all_target_ids)):]
|
||||
if len(all_input_ids) > 0 and random.random() < random_concat_ratio:
|
||||
input_ids = input_ids[1:]
|
||||
target_ids = target_ids[1:]
|
||||
all_input_ids.extend(input_ids)
|
||||
all_target_ids.extend(target_ids)
|
||||
if len(all_input_ids) >= seq_length:
|
||||
assert len(all_input_ids) == seq_length, f"{len(all_input_ids)=}, {seq_length=}, {len(buffer)=}"
|
||||
all_input_ids_list.append(all_input_ids)
|
||||
all_target_ids_list.append(all_target_ids)
|
||||
all_input_ids, all_target_ids = [], []
|
||||
|
||||
all_input_ids = all_input_ids + [tokenizer.pad_token_id for i in range(seq_length - len(all_input_ids))]
|
||||
all_target_ids = all_target_ids + [IGNORE_TOKEN_ID for i in range(seq_length - len(all_target_ids))]
|
||||
all_input_ids_list.append(all_input_ids)
|
||||
all_target_ids_list.append(all_target_ids)
|
||||
|
||||
if len(all_input_ids) <= 0:
|
||||
return None
|
||||
return {
|
||||
"input_ids": torch.tensor(all_input_ids_list, dtype=torch.long),
|
||||
"labels": torch.tensor(all_target_ids_list, dtype=torch.long)
|
||||
}
|
||||
|
||||
|
||||
def init_parallel_groups(ep_size=1):
|
||||
dist.init_process_group("nccl")
|
||||
world_size = int(os.getenv("WORLD_SIZE", "0"))
|
||||
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
||||
torch.cuda.set_device(local_rank)
|
||||
ep_group = edp_group = None
|
||||
for i in range(0, world_size, ep_size):
|
||||
ranks = list(range(i, i + ep_size))
|
||||
group = dist.new_group(ranks)
|
||||
if local_rank in ranks:
|
||||
ep_group = group
|
||||
edp_group = None
|
||||
for i in range(ep_size):
|
||||
ranks = list(range(i, world_size, ep_size))
|
||||
group = dist.new_group(ranks)
|
||||
if local_rank in ranks:
|
||||
edp_group = group
|
||||
dist.all_reduce(torch.zeros(1, device="cuda"), group=ep_group)
|
||||
dist.all_reduce(torch.zeros(1, device="cuda"), group=edp_group)
|
||||
return world_size, local_rank, ep_group, edp_group
|
||||
|
Loading…
Reference in New Issue
Block a user