2024-08-09 08:23:48 +00:00
|
|
|
import os
|
|
|
|
import random
|
|
|
|
import torch
|
|
|
|
import torch.distributed as dist
|
2024-07-04 13:37:15 +00:00
|
|
|
# given a message object, convert to prompt and response
|
|
|
|
|
|
|
|
PROMPT_USER: str = 'User: {input}\n\n'
|
|
|
|
PROMPT_ASSISTANT: str = 'Assistant:' # should not have a space at the end
|
|
|
|
ASSISTANT_RESPONSE: str = ' {input}'
|
|
|
|
|
|
|
|
def get_formatted_question(line):
|
|
|
|
return PROMPT_USER.format(input=str(line).strip()) + PROMPT_ASSISTANT
|
|
|
|
|
|
|
|
def get_formatted_answer(line):
|
|
|
|
return ASSISTANT_RESPONSE.format(input=str(line).strip())
|
|
|
|
|
|
|
|
def get_formatted_input_and_target(messages, tokenizer, IGNORE_TOKEN_ID=-100, mask_prompt=True):
|
|
|
|
input_ids = []
|
|
|
|
target_ids = []
|
|
|
|
for idx, message in enumerate(messages):
|
|
|
|
if idx == 0:
|
|
|
|
input_ids.extend([tokenizer.bos_token_id])
|
|
|
|
target_ids.extend([tokenizer.bos_token_id])
|
|
|
|
|
|
|
|
if message['role'] == "user":
|
|
|
|
formatted_question = get_formatted_question(message['content'])
|
|
|
|
tokenized_line = tokenizer.encode(formatted_question, add_special_tokens=False)
|
|
|
|
input_ids.extend(tokenized_line)
|
|
|
|
if mask_prompt:
|
|
|
|
target_ids.extend([IGNORE_TOKEN_ID] * len(tokenized_line))
|
|
|
|
else:
|
|
|
|
target_ids.extend(tokenized_line)
|
|
|
|
elif message['role'] == "assistant":
|
|
|
|
formatted_answer = get_formatted_answer(message['content'])
|
|
|
|
tokenized_line = tokenizer.encode(formatted_answer, add_special_tokens=False) + [tokenizer.eos_token_id]
|
|
|
|
input_ids.extend(tokenized_line)
|
|
|
|
if message.get('mask', 0) == 1:
|
|
|
|
target_ids.extend([IGNORE_TOKEN_ID] * len(tokenized_line))
|
|
|
|
else:
|
|
|
|
target_ids.extend(tokenized_line)
|
|
|
|
else:
|
|
|
|
assert False, f"Unknown role: {message['role']}"
|
|
|
|
|
|
|
|
return [input_ids, target_ids]
|
2024-08-09 08:23:48 +00:00
|
|
|
|
|
|
|
|
|
|
|
def get_examples_from_buffer_pad(buffer, seq_length, tokenizer, random_concat_ratio, IGNORE_TOKEN_ID=-100):
|
|
|
|
all_input_ids_list, all_target_ids_list = [], []
|
|
|
|
all_input_ids, all_target_ids = [], []
|
|
|
|
|
|
|
|
for input_ids, target_ids in buffer:
|
|
|
|
if len(input_ids) > seq_length - len(all_input_ids):
|
|
|
|
input_ids = input_ids[-(seq_length - len(all_input_ids)):]
|
|
|
|
target_ids = target_ids[-(seq_length - len(all_target_ids)):]
|
|
|
|
if len(all_input_ids) > 0 and random.random() < random_concat_ratio:
|
|
|
|
input_ids = input_ids[1:]
|
|
|
|
target_ids = target_ids[1:]
|
|
|
|
all_input_ids.extend(input_ids)
|
|
|
|
all_target_ids.extend(target_ids)
|
|
|
|
if len(all_input_ids) >= seq_length:
|
|
|
|
assert len(all_input_ids) == seq_length, f"{len(all_input_ids)=}, {seq_length=}, {len(buffer)=}"
|
|
|
|
all_input_ids_list.append(all_input_ids)
|
|
|
|
all_target_ids_list.append(all_target_ids)
|
|
|
|
all_input_ids, all_target_ids = [], []
|
|
|
|
|
|
|
|
all_input_ids = all_input_ids + [tokenizer.pad_token_id for i in range(seq_length - len(all_input_ids))]
|
|
|
|
all_target_ids = all_target_ids + [IGNORE_TOKEN_ID for i in range(seq_length - len(all_target_ids))]
|
|
|
|
all_input_ids_list.append(all_input_ids)
|
|
|
|
all_target_ids_list.append(all_target_ids)
|
|
|
|
|
|
|
|
if len(all_input_ids) <= 0:
|
|
|
|
return None
|
|
|
|
return {
|
|
|
|
"input_ids": torch.tensor(all_input_ids_list, dtype=torch.long),
|
|
|
|
"labels": torch.tensor(all_target_ids_list, dtype=torch.long)
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
def init_parallel_groups(ep_size=1):
|
|
|
|
dist.init_process_group("nccl")
|
|
|
|
world_size = int(os.getenv("WORLD_SIZE", "0"))
|
|
|
|
local_rank = int(os.getenv("LOCAL_RANK", "0"))
|
|
|
|
torch.cuda.set_device(local_rank)
|
|
|
|
ep_group = edp_group = None
|
|
|
|
for i in range(0, world_size, ep_size):
|
|
|
|
ranks = list(range(i, i + ep_size))
|
|
|
|
group = dist.new_group(ranks)
|
|
|
|
if local_rank in ranks:
|
|
|
|
ep_group = group
|
|
|
|
edp_group = None
|
|
|
|
for i in range(ep_size):
|
|
|
|
ranks = list(range(i, world_size, ep_size))
|
|
|
|
group = dist.new_group(ranks)
|
|
|
|
if local_rank in ranks:
|
|
|
|
edp_group = group
|
|
|
|
dist.all_reduce(torch.zeros(1, device="cuda"), group=ep_group)
|
|
|
|
dist.all_reduce(torch.zeros(1, device="cuda"), group=edp_group)
|
|
|
|
return world_size, local_rank, ep_group, edp_group
|