mirror of
https://github.com/deepseek-ai/ESFT
synced 2025-01-22 10:36:24 +00:00
206 lines
10 KiB
Python
206 lines
10 KiB
Python
|
from transformers.configuration_utils import PretrainedConfig
|
||
|
from transformers.utils import logging
|
||
|
|
||
|
logger = logging.get_logger(__name__)
|
||
|
|
||
|
DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
||
|
class DeepseekV2Config(PretrainedConfig):
|
||
|
r"""
|
||
|
This is the configuration class to store the configuration of a [`DeepseekV2Model`]. It is used to instantiate an DeepSeek
|
||
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||
|
defaults will yield a similar configuration to that of the DeepSeek-V2.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
vocab_size (`int`, *optional*, defaults to 102400):
|
||
|
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
||
|
`inputs_ids` passed when calling [`DeepseekV2Model`]
|
||
|
hidden_size (`int`, *optional*, defaults to 4096):
|
||
|
Dimension of the hidden representations.
|
||
|
intermediate_size (`int`, *optional*, defaults to 11008):
|
||
|
Dimension of the MLP representations.
|
||
|
moe_intermediate_size (`int`, *optional*, defaults to 1407):
|
||
|
Dimension of the MoE representations.
|
||
|
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||
|
Number of hidden layers in the Transformer decoder.
|
||
|
num_attention_heads (`int`, *optional*, defaults to 32):
|
||
|
Number of attention heads for each attention layer in the Transformer decoder.
|
||
|
n_shared_experts (`int`, *optional*, defaults to None):
|
||
|
Number of shared experts, None means dense model.
|
||
|
n_routed_experts (`int`, *optional*, defaults to None):
|
||
|
Number of routed experts, None means dense model.
|
||
|
routed_scaling_factor (`float`, *optional*, defaults to 1.0):
|
||
|
Scaling factor or routed experts.
|
||
|
topk_method (`str`, *optional*, defaults to `gready`):
|
||
|
Topk method used in routed gate.
|
||
|
n_group (`int`, *optional*, defaults to None):
|
||
|
Number of groups for routed experts.
|
||
|
topk_group (`int`, *optional*, defaults to None):
|
||
|
Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
|
||
|
num_experts_per_tok (`int`, *optional*, defaults to None):
|
||
|
Number of selected experts, None means dense model.
|
||
|
moe_layer_freq (`int`, *optional*, defaults to 1):
|
||
|
The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
|
||
|
first_k_dense_replace (`int`, *optional*, defaults to 0):
|
||
|
Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
|
||
|
\--k dense layers--/
|
||
|
norm_topk_prob (`bool`, *optional*, defaults to False):
|
||
|
Whether to normalize the weights of the routed experts.
|
||
|
scoring_func (`str`, *optional*, defaults to 'softmax'):
|
||
|
Method of computing expert weights.
|
||
|
aux_loss_alpha (`float`, *optional*, defaults to 0.001):
|
||
|
Auxiliary loss weight coefficient.
|
||
|
seq_aux = (`bool`, *optional*, defaults to True):
|
||
|
Whether to compute the auxiliary loss for each individual sample.
|
||
|
num_key_value_heads (`int`, *optional*):
|
||
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
||
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
||
|
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
||
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
||
|
by meanpooling all the original heads within that group. For more details checkout [this
|
||
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
||
|
`num_attention_heads`.
|
||
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
||
|
The non-linear activation function (function or string) in the decoder.
|
||
|
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
||
|
The maximum sequence length that this model might ever be used with.
|
||
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
||
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||
|
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
||
|
The epsilon used by the rms normalization layers.
|
||
|
use_cache (`bool`, *optional*, defaults to `True`):
|
||
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
||
|
relevant if `config.is_decoder=True`.
|
||
|
pad_token_id (`int`, *optional*):
|
||
|
Padding token id.
|
||
|
bos_token_id (`int`, *optional*, defaults to 1):
|
||
|
Beginning of stream token id.
|
||
|
eos_token_id (`int`, *optional*, defaults to 2):
|
||
|
End of stream token id.
|
||
|
pretraining_tp (`int`, *optional*, defaults to 1):
|
||
|
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
||
|
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
||
|
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
||
|
issue](https://github.com/pytorch/pytorch/issues/76232).
|
||
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
||
|
Whether to tie weight embeddings
|
||
|
rope_theta (`float`, *optional*, defaults to 10000.0):
|
||
|
The base period of the RoPE embeddings.
|
||
|
rope_scaling (`Dict`, *optional*):
|
||
|
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
||
|
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
||
|
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
||
|
`max_position_embeddings` to the expected new maximum.
|
||
|
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
||
|
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
||
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
||
|
The dropout ratio for the attention probabilities.
|
||
|
|
||
|
```python
|
||
|
>>> from transformers import DeepseekV2Model, DeepseekV2Config
|
||
|
|
||
|
>>> # Initializing a Deepseek-V2 style configuration
|
||
|
>>> configuration = DeepseekV2Config()
|
||
|
|
||
|
>>> # Accessing the model configuration
|
||
|
>>> configuration = model.config
|
||
|
```"""
|
||
|
|
||
|
model_type = "deepseek_v2"
|
||
|
keys_to_ignore_at_inference = ["past_key_values"]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=102400,
|
||
|
hidden_size=4096,
|
||
|
intermediate_size=11008,
|
||
|
moe_intermediate_size = 1407,
|
||
|
num_hidden_layers=30,
|
||
|
num_attention_heads=32,
|
||
|
num_key_value_heads=32,
|
||
|
n_shared_experts = None,
|
||
|
n_routed_experts = None,
|
||
|
ep_size = 1,
|
||
|
routed_scaling_factor = 1.0,
|
||
|
kv_lora_rank = 512,
|
||
|
q_lora_rank = 1536,
|
||
|
qk_rope_head_dim = 64,
|
||
|
v_head_dim = 128,
|
||
|
qk_nope_head_dim = 128,
|
||
|
topk_method = 'gready',
|
||
|
n_group = None,
|
||
|
topk_group = None,
|
||
|
num_experts_per_tok = None,
|
||
|
moe_layer_freq = 1,
|
||
|
first_k_dense_replace = 0,
|
||
|
norm_topk_prob = False,
|
||
|
scoring_func = 'softmax',
|
||
|
aux_loss_alpha = 0.001,
|
||
|
seq_aux = True,
|
||
|
hidden_act="silu",
|
||
|
max_position_embeddings=2048,
|
||
|
initializer_range=0.02,
|
||
|
rms_norm_eps=1e-6,
|
||
|
use_cache=True,
|
||
|
pad_token_id=None,
|
||
|
bos_token_id=100000,
|
||
|
eos_token_id=100001,
|
||
|
pretraining_tp=1,
|
||
|
tie_word_embeddings=False,
|
||
|
rope_theta=10000.0,
|
||
|
rope_scaling=None,
|
||
|
attention_bias=False,
|
||
|
attention_dropout=0.0,
|
||
|
**kwargs,
|
||
|
):
|
||
|
self.vocab_size = vocab_size
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.moe_intermediate_size = moe_intermediate_size
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.n_shared_experts = n_shared_experts
|
||
|
self.n_routed_experts = n_routed_experts
|
||
|
self.ep_size = ep_size
|
||
|
self.routed_scaling_factor = routed_scaling_factor
|
||
|
self.kv_lora_rank = kv_lora_rank
|
||
|
self.q_lora_rank = q_lora_rank
|
||
|
self.qk_rope_head_dim = qk_rope_head_dim
|
||
|
self.v_head_dim = v_head_dim
|
||
|
self.qk_nope_head_dim = qk_nope_head_dim
|
||
|
self.topk_method = topk_method
|
||
|
self.n_group = n_group
|
||
|
self.topk_group = topk_group
|
||
|
self.num_experts_per_tok = num_experts_per_tok
|
||
|
self.moe_layer_freq = moe_layer_freq
|
||
|
self.first_k_dense_replace = first_k_dense_replace
|
||
|
self.norm_topk_prob = norm_topk_prob
|
||
|
self.scoring_func = scoring_func
|
||
|
self.aux_loss_alpha = aux_loss_alpha
|
||
|
self.seq_aux = seq_aux
|
||
|
# for backward compatibility
|
||
|
if num_key_value_heads is None:
|
||
|
num_key_value_heads = num_attention_heads
|
||
|
|
||
|
self.num_key_value_heads = num_key_value_heads
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.rms_norm_eps = rms_norm_eps
|
||
|
self.pretraining_tp = pretraining_tp
|
||
|
self.use_cache = use_cache
|
||
|
self.rope_theta = rope_theta
|
||
|
self.rope_scaling = rope_scaling
|
||
|
self.attention_bias = attention_bias
|
||
|
self.attention_dropout = attention_dropout
|
||
|
|
||
|
super().__init__(
|
||
|
pad_token_id=pad_token_id,
|
||
|
bos_token_id=bos_token_id,
|
||
|
eos_token_id=eos_token_id,
|
||
|
tie_word_embeddings=tie_word_embeddings,
|
||
|
**kwargs,
|
||
|
)
|