feat: gradio demo integration (#16)

Co-authored-by: Bo Liu <benjaminliu.eecs@gmail.com>
Co-authored-by: Haoyu Lu <ruclhy1998@163.com>
This commit is contained in:
haoy945 2024-03-13 17:47:43 +08:00 committed by GitHub
parent 86a309683b
commit 601426030d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
24 changed files with 1787 additions and 44 deletions

View File

@ -4,7 +4,7 @@ COPYRIGHT = "DeepSeek."
PROJECT_PATH = deepseek_vl
SHELL = /bin/bash
SOURCE_FOLDERS = deepseek_vl
PYTHON_FILES = $(shell find $(SOURCE_FOLDERS) -type f -name "*.py" -o -name "*.pyi")
PYTHON_FILES = $(shell find $(SOURCE_FOLDERS) -type f -name "*.py" -o -name "*.pyi") cli_chat.py inference.py
COMMIT_HASH = $(shell git log -1 --format=%h)
PATH := $(HOME)/go/bin:$(PATH)
PYTHON ?= $(shell command -v python3 || command -v python)
@ -86,7 +86,7 @@ format: py-format-install ruff-install addlicense-install
$(PYTHON) -m isort --project $(PROJECT_PATH) $(PYTHON_FILES)
$(PYTHON) -m black $(PYTHON_FILES)
$(PYTHON) -m ruff check . --fix --exit-zero
addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") $(SOURCE_FOLDERS)
addlicense -c $(COPYRIGHT) -ignore tests/coverage.xml -l mit -y 2023-$(shell date +"%Y") $(SOURCE_FOLDERS) cli_chat.py inference.py
clean-py:
find . -type f -name '*.py[co]' -delete

View File

@ -65,12 +65,17 @@ Introducing DeepSeek-VL, an open-source Vision-Language (VL) Model designed for
[DeepSeek-VL: Towards Real-World Vision-Language Understanding](https://arxiv.org/abs/2403.05525)
Haoyu Lu*, Wen Liu*, Bo Zhang**, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, Chong Ruan (*Equal Contribution, **Project Lead)
Haoyu Lu*, Wen Liu*, Bo Zhang**, Bingxuan Wang, Kai Dong, Bo Liu, Jingxiang Sun, Tongzheng Ren, Zhuoshu Li, Hao Yang, Yaofeng Sun, Chengqi Deng, Hanwei Xu, Zhenda Xie, Chong Ruan (*Equal Contribution, **Project Lead)
![](https://github.com/deepseek-ai/DeepSeek-VL/blob/main/images/sample.jpg)
## 2. Release
<details>
<summary><b>2024-03-13</b>: Support DeepSeek-VL gradio demo.
</details>
<details>
<summary><b>2024-03-11</b>: DeepSeek-VL family released, including <code>DeepSeek-VL-7B-base</code>, <code>DeepSeek-VL-7B-chat</code>, <code>DeepSeek-VL-1.3B-base</code>, and <code>DeepSeek-VL-1.3B-chat</code>.</summary>
<br>The release includes a diverse set of models tailored for various applications within the DeepSeek-VL family. The models come in two sizes: 7B and 1.3B parameters, each offering base and chat variants to cater to different needs and integration scenarios.
@ -170,6 +175,16 @@ python cli_chat.py --model_path "deepseek-ai/deepseek-vl-7b-chat"
python cli_chat.py --model_path "local model path"
```
### Gradio Demo
```bash
pip install -e .[gradio]
python deepseek_vl/serve/app_deepseek.py
```
![](./images/gradio_demo.png)
Have Fun!
## 5. License
This code repository is licensed under [the MIT License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-CODE). The use of DeepSeek-VL Base/Chat models is subject to [DeepSeek Model License](https://github.com/deepseek-ai/DeepSeek-LLM/blob/HEAD/LICENSE-MODEL). DeepSeek-VL series (including Base and Chat) supports commercial use.
@ -179,7 +194,7 @@ This code repository is licensed under [the MIT License](https://github.com/deep
```
@misc{lu2024deepseekvl,
title={DeepSeek-VL: Towards Real-World Vision-Language Understanding},
author={Haoyu Lu and Wen Liu and Bo Zhang and Bingxuan Wang and Kai Dong and Bo Liu and Jingxiang Sun and Tongzheng Ren and Zhuoshu Li and Yaofeng Sun and Chengqi Deng and Hanwei Xu and Zhenda Xie and Chong Ruan},
author={Haoyu Lu and Wen Liu and Bo Zhang and Bingxuan Wang and Kai Dong and Bo Liu and Jingxiang Sun and Tongzheng Ren and Zhuoshu Li and Hao Yang and Yaofeng Sun and Chengqi Deng and Hanwei Xu and Zhenda Xie and Chong Ruan},
year={2024},
eprint={2403.05525},
archivePrefix={arXiv},

View File

@ -1,11 +1,31 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -*- coding: utf-8 -*-
import argparse
import os
import sys
from PIL import Image
from threading import Thread
import torch
from PIL import Image
from transformers import TextIteratorStreamer
from deepseek_vl.utils.io import load_pretrained_model
@ -33,22 +53,19 @@ def get_help_message(image_token):
@torch.inference_mode()
def response(args, conv, pil_images, tokenizer, vl_chat_processor, vl_gpt, generation_config):
def response(
args, conv, pil_images, tokenizer, vl_chat_processor, vl_gpt, generation_config
):
prompt = conv.get_prompt()
prepare_inputs = vl_chat_processor.__call__(
prompt=prompt,
images=pil_images,
force_batchify=True
prompt=prompt, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
streamer = TextIteratorStreamer(
tokenizer=tokenizer,
skip_prompt=True,
skip_special_tokens=True
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True
)
generation_config["inputs_embeds"] = inputs_embeds
generation_config["attention_mask"] = prepare_inputs.attention_mask
@ -79,7 +96,6 @@ def chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config):
help_msg = get_help_message(image_token)
while True:
print(help_msg)
pil_images = []
@ -87,9 +103,10 @@ def chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config):
roles = conv.roles
while True:
# get user input
user_input = get_user_input(f"{roles[0]} [{image_token} indicates an image]: ")
user_input = get_user_input(
f"{roles[0]} [{image_token} indicates an image]: "
)
if user_input == "exit":
print("Chat program exited.")
@ -135,11 +152,21 @@ def chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config):
sys.exit(0)
else:
print(f"File error, `{image_file}` does not exist. Please input the correct file path.")
print(
f"File error, `{image_file}` does not exist. Please input the correct file path."
)
# get the answer by the model's prediction
answer = ""
answer_iter = response(args, conv, pil_images, tokenizer, vl_chat_processor, vl_gpt, generation_config)
answer_iter = response(
args,
conv,
pil_images,
tokenizer,
vl_chat_processor,
vl_gpt,
generation_config,
)
sys.stdout.write(f"{conv.roles[1]}: ")
for char in answer_iter:
answer += char
@ -153,7 +180,6 @@ def chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config):
def main(args):
# setup
tokenizer, vl_chat_processor, vl_gpt = load_pretrained_model(args.model_path)
generation_config = dict(
@ -164,12 +190,14 @@ def main(args):
use_cache=True,
)
if args.temperature > 0:
generation_config.update({
"do_sample": True,
"top_p": args.top_p,
"temperature": args.temperature,
"repetition_penalty": args.repetition_penalty,
})
generation_config.update(
{
"do_sample": True,
"top_p": args.top_p,
"temperature": args.temperature,
"repetition_penalty": args.repetition_penalty,
}
)
else:
generation_config.update({"do_sample": False})
@ -178,12 +206,15 @@ def main(args):
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="deepseek-ai/deepseek-vl-7b-chat",
help="the huggingface model name or the local path of the downloaded huggingface model.")
parser.add_argument(
"--model_path",
type=str,
default="deepseek-ai/deepseek-vl-7b-chat",
help="the huggingface model name or the local path of the downloaded huggingface model.",
)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--repetition_penalty", type=float, default=1.1)
parser.add_argument("--max_gen_len", type=int, default=512)
args = parser.parse_args()
main(args)

514
deepseek_vl/serve/app_deepseek.py Executable file
View File

@ -0,0 +1,514 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -*- coding:utf-8 -*-
import base64
from io import BytesIO
import gradio as gr
import torch
from app_modules.gradio_utils import (
cancel_outputing,
delete_last_conversation,
reset_state,
reset_textbox,
transfer_input,
wrap_gen_fn,
)
from app_modules.overwrites import reload_javascript
from app_modules.presets import CONCURRENT_COUNT, description, description_top, title
from app_modules.utils import configure_logger, is_variable_assigned, strip_stop_words
from deepseek_vl.serve.inference import (
convert_conversation_to_prompts,
deepseek_generate,
load_model,
)
from deepseek_vl.utils.conversation import SeparatorStyle
def load_models():
models = {
"DeepSeek-VL 7B": "deepseek-ai/deepseek-vl-7b-chat",
}
for model_name in models:
models[model_name] = load_model(models[model_name])
return models
logger = configure_logger()
models = load_models()
MODELS = sorted(list(models.keys()))
def generate_prompt_with_history(
text, image, history, vl_chat_processor, tokenizer, max_length=2048
):
"""
Generate a prompt with history for the deepseek application.
Args:
text (str): The text prompt.
image (str): The image prompt.
history (list): List of previous conversation messages.
tokenizer: The tokenizer used for encoding the prompt.
max_length (int): The maximum length of the prompt.
Returns:
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
"""
sft_format = "deepseek"
user_role_ind = 0
bot_role_ind = 1
# Initialize conversation
conversation = vl_chat_processor.new_chat_template()
if history:
conversation.messages = history
if image is not None:
if "<image_placeholder>" not in text:
text = (
"<image_placeholder>" + "\n" + text
) # append the <image_placeholder> in a new line after the text prompt
text = (text, image)
conversation.append_message(conversation.roles[user_role_ind], text)
conversation.append_message(conversation.roles[bot_role_ind], "")
# Create a copy of the conversation to avoid history truncation in the UI
conversation_copy = conversation.copy()
logger.info("=" * 80)
logger.info(get_prompt(conversation))
rounds = len(conversation.messages) // 2
for _ in range(rounds):
current_prompt = get_prompt(conversation)
current_prompt = (
current_prompt.replace("</s>", "")
if sft_format == "deepseek"
else current_prompt
)
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
return conversation_copy
if len(conversation.messages) % 2 != 0:
gr.Error("The messages between user and assistant are not paired.")
return
try:
for _ in range(2): # pop out two messages in a row
conversation.messages.pop(0)
except IndexError:
gr.Error("Input text processing failed, unable to respond in this round.")
return None
gr.Error("Prompt could not be generated within max_length limit.")
return None
def to_gradio_chatbot(conv):
"""Convert the conversation to gradio chatbot format."""
ret = []
for i, (role, msg) in enumerate(conv.messages[conv.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
msg, image = msg
if isinstance(image, str):
with open(image, "rb") as f:
data = f.read()
img_b64_str = base64.b64encode(data).decode()
image_str = f'<video src="data:video/mp4;base64,{img_b64_str}" controls width="426" height="240"></video>'
msg = msg.replace("\n".join(["<image_placeholder>"] * 4), image_str)
else:
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
msg = msg.replace("<image_placeholder>", img_str)
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def to_gradio_history(conv):
"""Convert the conversation to gradio history state."""
return conv.messages[conv.offset :]
def get_prompt(conv) -> str:
"""Get the prompt for generation."""
system_prompt = conv.system_template.format(system_message=conv.system_message)
if conv.sep_style == SeparatorStyle.DeepSeek:
seps = [conv.sep, conv.sep2]
if system_prompt == "" or system_prompt is None:
ret = ""
else:
ret = system_prompt + seps[0]
for i, (role, message) in enumerate(conv.messages):
if message:
if type(message) is tuple: # multimodal message
message, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
return ret
else:
return conv.get_prompt
@wrap_gen_fn
def predict(
text,
image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
):
"""
Function to predict the response based on the user's input and selected model.
Parameters:
user_text (str): The input text from the user.
user_image (str): The input image from the user.
chatbot (str): The chatbot's name.
history (str): The history of the chat.
top_p (float): The top-p parameter for the model.
temperature (float): The temperature parameter for the model.
max_length_tokens (int): The maximum length of tokens for the model.
max_context_length_tokens (int): The maximum length of context tokens for the model.
model_select_dropdown (str): The selected model from the dropdown.
Returns:
generator: A generator that yields the chatbot outputs, history, and status.
"""
print("running the prediction function")
try:
tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown]
if text == "":
yield chatbot, history, "Empty context."
return
except KeyError:
yield [[text, "No Model Found"]], [], "No Model Found"
return
conversation = generate_prompt_with_history(
text,
image,
history,
vl_chat_processor,
tokenizer,
max_length=max_context_length_tokens,
)
prompts = convert_conversation_to_prompts(conversation)
stop_words = conversation.stop_str
gradio_chatbot_output = to_gradio_chatbot(conversation)
full_response = ""
with torch.no_grad():
for x in deepseek_generate(
prompts=prompts,
vl_gpt=vl_gpt,
vl_chat_processor=vl_chat_processor,
tokenizer=tokenizer,
stop_words=stop_words,
max_length=max_length_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
top_p=top_p,
):
full_response += x
response = strip_stop_words(full_response, stop_words)
conversation.update_last_message(response)
gradio_chatbot_output[-1][1] = response
yield gradio_chatbot_output, to_gradio_history(
conversation
), "Generating..."
print("flushed result to gradio")
torch.cuda.empty_cache()
if is_variable_assigned("x"):
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
print(
f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}"
)
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
def retry(
text,
image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
):
if len(history) == 0:
yield (chatbot, history, "Empty context")
return
chatbot.pop()
history.pop()
text = history.pop()[-1]
if type(text) is tuple:
text, image = text
yield from predict(
text,
image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
)
def build_demo(MODELS):
with open("deepseek_vl/serve/assets/custom.css", "r", encoding="utf-8") as f:
customCSS = f.read()
with gr.Blocks(theme=gr.themes.Soft()) as demo:
history = gr.State([])
input_text = gr.State()
input_image = gr.State()
with gr.Row():
gr.HTML(title)
status_display = gr.Markdown("Success", elem_id="status_display")
gr.Markdown(description_top)
with gr.Row(equal_height=True):
with gr.Column(scale=4):
with gr.Row():
chatbot = gr.Chatbot(
elem_id="deepseek_chatbot",
show_share_button=True,
likeable=True,
bubble_full_width=False,
height=600,
)
with gr.Row():
with gr.Column(scale=4):
text_box = gr.Textbox(
show_label=False, placeholder="Enter text", container=False
)
with gr.Column(
min_width=70,
):
submitBtn = gr.Button("Send")
with gr.Column(
min_width=70,
):
cancelBtn = gr.Button("Stop")
with gr.Row():
emptyBtn = gr.Button(
"🧹 New Conversation",
)
retryBtn = gr.Button("🔄 Regenerate")
delLastBtn = gr.Button("🗑️ Remove Last Turn")
with gr.Column():
image_box = gr.Image(type="pil")
with gr.Tab(label="Parameter Setting") as parameter_row:
top_p = gr.Slider(
minimum=-0,
maximum=1.0,
value=0.95,
step=0.05,
interactive=True,
label="Top-p",
)
temperature = gr.Slider(
minimum=0,
maximum=1.0,
value=0.1,
step=0.1,
interactive=True,
label="Temperature",
)
repetition_penalty = gr.Slider(
minimum=0.0,
maximum=2.0,
value=1.1,
step=0.1,
interactive=True,
label="Repetition penalty",
)
max_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=2048,
step=8,
interactive=True,
label="Max Generation Tokens",
)
max_context_length_tokens = gr.Slider(
minimum=0,
maximum=4096,
value=4096,
step=128,
interactive=True,
label="Max History Tokens",
)
model_select_dropdown = gr.Dropdown(
label="Select Models",
choices=MODELS,
multiselect=False,
value=MODELS[0],
interactive=True,
)
examples_list = [
[
"deepseek_vl/serve/examples/rap.jpeg",
"Can you write me a master rap song that rhymes very well based on this image?",
],
[
"deepseek_vl/serve/examples/app.png",
"What is this app about?",
],
[
"deepseek_vl/serve/examples/pipeline.png",
"Help me write a python code based on the image.",
],
[
"deepseek_vl/serve/examples/chart.png",
"Could you help me to re-draw this picture with python codes?",
],
[
"deepseek_vl/serve/examples/mirror.png",
"How many people are there in the image. Why?",
],
[
"deepseek_vl/serve/examples/puzzle.png",
"Can this 2 pieces combine together?",
],
]
gr.Examples(examples=examples_list, inputs=[image_box, text_box])
gr.Markdown(description)
input_widgets = [
input_text,
input_image,
chatbot,
history,
top_p,
temperature,
repetition_penalty,
max_length_tokens,
max_context_length_tokens,
model_select_dropdown,
]
output_widgets = [chatbot, history, status_display]
transfer_input_args = dict(
fn=transfer_input,
inputs=[text_box, image_box],
outputs=[input_text, input_image, text_box, image_box, submitBtn],
show_progress=True,
)
predict_args = dict(
fn=predict,
inputs=input_widgets,
outputs=output_widgets,
show_progress=True,
)
retry_args = dict(
fn=retry,
inputs=input_widgets,
outputs=output_widgets,
show_progress=True,
)
reset_args = dict(
fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
)
predict_events = [
text_box.submit(**transfer_input_args).then(**predict_args),
submitBtn.click(**transfer_input_args).then(**predict_args),
]
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
emptyBtn.click(**reset_args)
retryBtn.click(**retry_args)
delLastBtn.click(
delete_last_conversation,
[chatbot, history],
output_widgets,
show_progress=True,
)
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
return demo
if __name__ == "__main__":
demo = build_demo(MODELS)
demo.title = "DeepSeek-VL Chatbot"
reload_javascript()
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
share=False,
favicon_path="deepseek_vl/serve/assets/favicon.ico",
inbrowser=False,
server_name="0.0.0.0",
server_port=8122,
)

View File

@ -0,0 +1,94 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from functools import wraps
import gradio as gr
def wrap_gen_fn(gen_fn):
@wraps(gen_fn)
def wrapped_gen_fn(prompt, *args, **kwargs):
try:
yield from gen_fn(prompt, *args, **kwargs)
except gr.Error as g_err:
raise g_err
except Exception as e:
raise gr.Error(f"Failed to generate text: {e}") from e
return wrapped_gen_fn
def delete_last_conversation(chatbot, history):
if len(history) % 2 != 0:
gr.Error("history length is not even")
return (
chatbot,
history,
"Delete Done",
)
if len(chatbot) > 0:
chatbot.pop()
if len(history) > 0 and len(history) % 2 == 0:
history.pop()
history.pop()
return (
chatbot,
history,
"Delete Done",
)
def reset_state():
return [], [], None, "Reset Done"
def reset_textbox():
return gr.update(value=""), ""
def cancel_outputing():
return "Stop Done"
def transfer_input(input_text, input_image):
print("transferring input text and input image")
return (
input_text,
input_image,
gr.update(value=""),
gr.update(value=None),
gr.Button(visible=True),
)
class State:
interrupted = False
def interrupt(self):
self.interrupted = True
def recover(self):
self.interrupted = False
shared_state = State()

View File

@ -0,0 +1,81 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from __future__ import annotations
import logging
from typing import List, Tuple
from app_modules.presets import gr
from app_modules.utils import convert_asis, convert_mdtext, detect_converted_mark
def compact_text_chunks(self, prompt, text_chunks: List[str]) -> List[str]:
logging.debug("Compacting text chunks...🚀🚀🚀")
combined_str = [c.strip() for c in text_chunks if c.strip()]
combined_str = [f"[{index+1}] {c}" for index, c in enumerate(combined_str)]
combined_str = "\n\n".join(combined_str)
# resplit based on self.max_chunk_overlap
text_splitter = self.get_text_splitter_given_prompt(prompt, 1, padding=1)
return text_splitter.split_text(combined_str)
def postprocess(
self, y: List[Tuple[str | None, str | None]]
) -> List[Tuple[str | None, str | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML.
"""
if y is None or y == []:
return []
temp = []
for x in y:
user, bot = x
if not detect_converted_mark(user):
user = convert_asis(user)
if not detect_converted_mark(bot):
bot = convert_mdtext(bot)
temp.append((user, bot))
return temp
with open("deepseek_vl/serve/assets/custom.js", "r", encoding="utf-8") as f, open(
"deepseek_vl/serve/assets/Kelpy-Codos.js", "r", encoding="utf-8"
) as f2:
customJS = f.read()
kelpyCodos = f2.read()
def reload_javascript():
print("Reloading javascript...")
js = f"<script>{customJS}</script><script>{kelpyCodos}</script>"
def template_response(*args, **kwargs):
res = GradioTemplateResponseOriginal(*args, **kwargs)
res.body = res.body.replace(b"</html>", f"{js}</html>".encode("utf8"))
res.init_headers()
return res
gr.routes.templates.TemplateResponse = template_response
GradioTemplateResponseOriginal = gr.routes.templates.TemplateResponse

View File

@ -0,0 +1,96 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -*- coding:utf-8 -*-
import gradio as gr
title = """<h1 align="left" style="min-width:200px; margin-top:0;">Chat with DeepSeek-VL </h1>"""
description_top = """"""
description = """"""
CONCURRENT_COUNT = 10
ALREADY_CONVERTED_MARK = "<!-- ALREADY CONVERTED BY PARSER. -->"
small_and_beautiful_theme = gr.themes.Soft(
primary_hue=gr.themes.Color(
c50="#EBFAF2",
c100="#CFF3E1",
c200="#A8EAC8",
c300="#77DEA9",
c400="#3FD086",
c500="#02C160",
c600="#06AE56",
c700="#05974E",
c800="#057F45",
c900="#04673D",
c950="#2E5541",
name="small_and_beautiful",
),
secondary_hue=gr.themes.Color(
c50="#576b95",
c100="#576b95",
c200="#576b95",
c300="#576b95",
c400="#576b95",
c500="#576b95",
c600="#576b95",
c700="#576b95",
c800="#576b95",
c900="#576b95",
c950="#576b95",
),
neutral_hue=gr.themes.Color(
name="gray",
c50="#f6f7f8",
# c100="#f3f4f6",
c100="#F2F2F2",
c200="#e5e7eb",
c300="#d1d5db",
c400="#B2B2B2",
c500="#808080",
c600="#636363",
c700="#515151",
c800="#393939",
# c900="#272727",
c900="#2B2B2B",
c950="#171717",
),
radius_size=gr.themes.sizes.radius_sm,
).set(
# button_primary_background_fill="*primary_500",
button_primary_background_fill_dark="*primary_600",
# button_primary_background_fill_hover="*primary_400",
# button_primary_border_color="*primary_500",
button_primary_border_color_dark="*primary_600",
button_primary_text_color="white",
button_primary_text_color_dark="white",
button_secondary_background_fill="*neutral_100",
button_secondary_background_fill_hover="*neutral_50",
button_secondary_background_fill_dark="*neutral_900",
button_secondary_text_color="*neutral_800",
button_secondary_text_color_dark="white",
# background_fill_primary="#F7F7F7",
# background_fill_primary_dark="#1F1F1F",
# block_title_text_color="*primary_500",
block_title_background_fill_dark="*primary_900",
block_label_background_fill_dark="*primary_900",
input_background_fill="#F6F6F6",
# chatbot_code_background_color_dark="*neutral_950",
)

View File

@ -0,0 +1,228 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -*- coding:utf-8 -*-
from __future__ import annotations
import html
import logging
import os
import re
import time
import mdtex2html
from app_modules.presets import ALREADY_CONVERTED_MARK
from markdown import markdown
from pygments import highlight
from pygments.formatters import HtmlFormatter
from pygments.lexers import ClassNotFound, get_lexer_by_name, guess_lexer
logger = logging.getLogger("gradio_logger")
def configure_logger():
logger = logging.getLogger("gradio_logger")
logger.setLevel(logging.DEBUG)
timestr = time.strftime("%Y%m%d-%H%M%S")
os.makedirs("deepseek_vl/serve/logs", exist_ok=True)
file_handler = logging.FileHandler(
f"deepseek_vl/serve/logs/{timestr}_gradio_log.log"
)
console_handler = logging.StreamHandler()
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
console_handler.setFormatter(formatter)
file_handler.setFormatter(formatter)
console_handler.setLevel(logging.INFO)
file_handler.setLevel(logging.INFO)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
return logger
def strip_stop_words(x, stop_words):
for w in stop_words:
if w in x:
return x[: x.index(w)].strip()
return x.strip()
def format_output(history, text, x):
updated_history = history + [[text, x]]
a = [[y[0], convert_to_markdown(y[1])] for y in updated_history]
return a, updated_history
def markdown_to_html_with_syntax_highlight(md_str): # deprecated
def replacer(match):
lang = match.group(1) or "text"
code = match.group(2)
try:
lexer = get_lexer_by_name(lang, stripall=True)
except ValueError:
lexer = get_lexer_by_name("text", stripall=True)
formatter = HtmlFormatter()
highlighted_code = highlight(code, lexer, formatter)
return f'<pre><code class="{lang}">{highlighted_code}</code></pre>'
code_block_pattern = r"```(\w+)?\n([\s\S]+?)\n```"
md_str = re.sub(code_block_pattern, replacer, md_str, flags=re.MULTILINE)
html_str = markdown(md_str)
return html_str
def normalize_markdown(md_text: str) -> str: # deprecated
lines = md_text.split("\n")
normalized_lines = []
inside_list = False
for i, line in enumerate(lines):
if re.match(r"^(\d+\.|-|\*|\+)\s", line.strip()):
if not inside_list and i > 0 and lines[i - 1].strip() != "":
normalized_lines.append("")
inside_list = True
normalized_lines.append(line)
elif inside_list and line.strip() == "":
if i < len(lines) - 1 and not re.match(
r"^(\d+\.|-|\*|\+)\s", lines[i + 1].strip()
):
normalized_lines.append(line)
continue
else:
inside_list = False
normalized_lines.append(line)
return "\n".join(normalized_lines)
def convert_mdtext(md_text):
code_block_pattern = re.compile(r"```(.*?)(?:```|$)", re.DOTALL)
inline_code_pattern = re.compile(r"`(.*?)`", re.DOTALL)
code_blocks = code_block_pattern.findall(md_text)
non_code_parts = code_block_pattern.split(md_text)[::2]
result = []
for non_code, code in zip(non_code_parts, code_blocks + [""]):
if non_code.strip():
non_code = normalize_markdown(non_code)
if inline_code_pattern.search(non_code):
result.append(markdown(non_code, extensions=["tables"]))
else:
result.append(mdtex2html.convert(non_code, extensions=["tables"]))
if code.strip():
code = f"\n```{code}\n\n```"
code = markdown_to_html_with_syntax_highlight(code)
result.append(code)
result = "".join(result)
result += ALREADY_CONVERTED_MARK
return result
def convert_asis(userinput):
return f'<p style="white-space:pre-wrap;">{html.escape(userinput)}</p>{ALREADY_CONVERTED_MARK}'
def is_stop_word_or_prefix(s: str, stop_words: list) -> bool:
return any(s.endswith(stop_word) for stop_word in stop_words)
def detect_converted_mark(userinput):
return bool(userinput.endswith(ALREADY_CONVERTED_MARK))
def detect_language(code):
first_line = "" if code.startswith("\n") else code.strip().split("\n", 1)[0]
language = first_line.lower() if first_line else ""
code_without_language = code[len(first_line) :].lstrip() if first_line else code
return language, code_without_language
def convert_to_markdown(text):
text = text.replace("$", "&#36;")
text = text.replace("\r\n", "\n")
def replace_leading_tabs_and_spaces(line):
new_line = []
for char in line:
if char == "\t":
new_line.append("&#9;")
elif char == " ":
new_line.append("&nbsp;")
else:
break
return "".join(new_line) + line[len(new_line) :]
markdown_text = ""
lines = text.split("\n")
in_code_block = False
for line in lines:
if in_code_block is False and line.startswith("```"):
in_code_block = True
markdown_text += f"{line}\n"
elif in_code_block is True and line.startswith("```"):
in_code_block = False
markdown_text += f"{line}\n"
elif in_code_block:
markdown_text += f"{line}\n"
else:
line = replace_leading_tabs_and_spaces(line)
line = re.sub(r"^(#)", r"\\\1", line)
markdown_text += f"{line} \n"
return markdown_text
def add_language_tag(text):
def detect_language(code_block):
try:
lexer = guess_lexer(code_block)
return lexer.name.lower()
except ClassNotFound:
return ""
code_block_pattern = re.compile(r"(```)(\w*\n[^`]+```)", re.MULTILINE)
def replacement(match):
code_block = match.group(2)
if match.group(2).startswith("\n"):
language = detect_language(code_block)
return (
f"```{language}{code_block}```" if language else f"```\n{code_block}```"
)
else:
return match.group(1) + code_block + "```"
text2 = code_block_pattern.sub(replacement, text)
return text2
def is_variable_assigned(var_name: str) -> bool:
return var_name in locals()

View File

@ -0,0 +1,100 @@
/**
* Copyright (c) 2023-2024 DeepSeek.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// ==UserScript==
// @name Kelpy Codos
// @namespace https://github.com/Keldos-Li/Kelpy-Codos
// @version 1.0.5
// @author Keldos; https://keldos.me/
// @description Add copy button to PRE tags before CODE tag, for Chuanhu ChatGPT especially.
// Based on Chuanhu ChatGPT version: ac04408 (2023-3-22)
// @license GPL-3.0
// @grant none
// ==/UserScript==
(function () {
"use strict";
function addCopyButton(pre) {
var code = pre.querySelector("code");
if (!code) {
return; // 如果没有找到 <code> 元素,则不添加按钮
}
var firstChild = code.firstChild;
if (!firstChild) {
return; // 如果 <code> 元素没有子节点,则不添加按钮
}
var button = document.createElement("button");
button.textContent = "\uD83D\uDCCE"; // 使用 📎 符号作为“复制”按钮的文本
button.style.position = "relative";
button.style.float = "right";
button.style.fontSize = "1em"; // 可选:调整按钮大小
button.style.background = "none"; // 可选:去掉背景颜色
button.style.border = "none"; // 可选:去掉边框
button.style.cursor = "pointer"; // 可选:显示指针样式
button.addEventListener("click", function () {
var range = document.createRange();
range.selectNodeContents(code);
range.setStartBefore(firstChild); // 将范围设置为第一个子节点之前
var selection = window.getSelection();
selection.removeAllRanges();
selection.addRange(range);
try {
var success = document.execCommand("copy");
if (success) {
button.textContent = "\u2714";
setTimeout(function () {
button.textContent = "\uD83D\uDCCE"; // 恢复按钮为“复制”
}, 2000);
} else {
button.textContent = "\u2716";
}
} catch (e) {
console.error(e);
button.textContent = "\u2716";
}
selection.removeAllRanges();
});
code.insertBefore(button, firstChild); // 将按钮插入到第一个子元素之前
}
function handleNewElements(mutationsList, observer) {
for (var mutation of mutationsList) {
if (mutation.type === "childList") {
for (var node of mutation.addedNodes) {
if (node.nodeName === "PRE") {
addCopyButton(node);
}
}
}
}
}
var observer = new MutationObserver(handleNewElements);
observer.observe(document.documentElement, {
childList: true,
subtree: true,
});
document.querySelectorAll("pre").forEach(addCopyButton);
})();

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@ -0,0 +1,355 @@
/**
* Copyright (c) 2023-2024 DeepSeek.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
:root {
--chatbot-color-light: #f3f3f3;
--chatbot-color-dark: #121111;
}
/* status_display */
#status_display {
display: flex;
min-height: 2.5em;
align-items: flex-end;
justify-content: flex-end;
}
#status_display p {
font-size: 0.85em;
font-family: monospace;
color: var(--body-text-color-subdued);
}
/* usage_display */
#usage_display {
height: 1em;
}
#usage_display p {
padding: 0 1em;
font-size: 0.85em;
font-family: monospace;
color: var(--body-text-color-subdued);
}
/* list */
ol:not(.options),
ul:not(.options) {
padding-inline-start: 2em !important;
}
/* Thank @Keldos-Li for fixing it */
/* Light mode (default) */
#deepseek_chatbot {
background-color: var(--chatbot-color-light) !important;
color: #000000 !important;
}
[data-testid="bot"] {
background-color: #ffffff !important;
}
[data-testid="user"] {
background-color: #95ec69 !important;
}
/* Dark mode */
.dark #deepseek_chatbot {
background-color: var(--chatbot-color-dark) !important;
color: #ffffff !important;
}
.dark [data-testid="bot"] {
background-color: #2c2c2c !important;
}
.dark [data-testid="user"] {
background-color: #26b561 !important;
}
#deepseek_chatbot {
height: 100%;
min-height: 800px;
flex-grow: 1;
overflow: auto;
}
[class*="message"] {
border-radius: var(--radius-xl) !important;
border: none;
padding: var(--spacing-xl) !important;
font-size: var(--text-md) !important;
line-height: var(--line-md) !important;
min-height: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
min-width: calc(var(--text-md) * var(--line-md) + 2 * var(--spacing-xl));
}
[data-testid="bot"] {
max-width: 85%;
border-bottom-left-radius: 0 !important;
}
[data-testid="user"] {
max-width: 85%;
width: auto !important;
border-bottom-right-radius: 0 !important;
}
/* Table */
table {
margin: 1em 0;
border-collapse: collapse;
empty-cells: show;
}
td,
th {
border: 1.2px solid var(--border-color-primary) !important;
padding: 0.2em;
}
thead {
background-color: rgba(175, 184, 193, 0.2);
}
thead th {
padding: 0.5em 0.2em;
}
/* Inline code */
#deepseek_chatbot code {
display: inline;
white-space: break-spaces;
border-radius: 6px;
margin: 0 2px 0 2px;
padding: 0.2em 0.4em 0.1em 0.4em;
background-color: rgba(175, 184, 193, 0.2);
}
/* Code block */
#deepseek_chatbot pre code {
display: block;
overflow: auto;
white-space: pre;
background-color: #1c1d1e !important;
border-radius: 10px;
padding: 1.4em 1.2em 0em 1.4em;
margin: 1.2em 2em 1.2em 0.5em;
color: #fdf8f8;
box-shadow: 6px 6px 16px hsla(0, 0%, 0%, 0.2);
}
/* Hightlight */
#deepseek_chatbot .highlight {
background-color: transparent;
}
#deepseek_chatbot .highlight .hll {
background-color: #49483e;
}
#deepseek_chatbot .highlight .c {
color: #75715e;
} /* Comment */
#deepseek_chatbot .highlight .err {
color: #960050;
background-color: #1e0010;
} /* Error */
#deepseek_chatbot .highlight .k {
color: #66d9ef;
} /* Keyword */
#deepseek_chatbot .highlight .l {
color: #ae81ff;
} /* Literal */
#deepseek_chatbot .highlight .n {
color: #f8f8f2;
} /* Name */
#deepseek_chatbot .highlight .o {
color: #f92672;
} /* Operator */
#deepseek_chatbot .highlight .p {
color: #f8f8f2;
} /* Punctuation */
#deepseek_chatbot .highlight .ch {
color: #75715e;
} /* Comment.Hashbang */
#deepseek_chatbot .highlight .cm {
color: #75715e;
} /* Comment.Multiline */
#deepseek_chatbot .highlight .cp {
color: #75715e;
} /* Comment.Preproc */
#deepseek_chatbot .highlight .cpf {
color: #75715e;
} /* Comment.PreprocFile */
#deepseek_chatbot .highlight .c1 {
color: #75715e;
} /* Comment.Single */
#deepseek_chatbot .highlight .cs {
color: #75715e;
} /* Comment.Special */
#deepseek_chatbot .highlight .gd {
color: #f92672;
} /* Generic.Deleted */
#deepseek_chatbot .highlight .ge {
font-style: italic;
} /* Generic.Emph */
#deepseek_chatbot .highlight .gi {
color: #a6e22e;
} /* Generic.Inserted */
#deepseek_chatbot .highlight .gs {
font-weight: bold;
} /* Generic.Strong */
#deepseek_chatbot .highlight .gu {
color: #75715e;
} /* Generic.Subheading */
#deepseek_chatbot .highlight .kc {
color: #66d9ef;
} /* Keyword.Constant */
#deepseek_chatbot .highlight .kd {
color: #66d9ef;
} /* Keyword.Declaration */
#deepseek_chatbot .highlight .kn {
color: #f92672;
} /* Keyword.Namespace */
#deepseek_chatbot .highlight .kp {
color: #66d9ef;
} /* Keyword.Pseudo */
#deepseek_chatbot .highlight .kr {
color: #66d9ef;
} /* Keyword.Reserved */
#deepseek_chatbot .highlight .kt {
color: #66d9ef;
} /* Keyword.Type */
#deepseek_chatbot .highlight .ld {
color: #e6db74;
} /* Literal.Date */
#deepseek_chatbot .highlight .m {
color: #ae81ff;
} /* Literal.Number */
#deepseek_chatbot .highlight .s {
color: #e6db74;
} /* Literal.String */
#deepseek_chatbot .highlight .na {
color: #a6e22e;
} /* Name.Attribute */
#deepseek_chatbot .highlight .nb {
color: #f8f8f2;
} /* Name.Builtin */
#deepseek_chatbot .highlight .nc {
color: #a6e22e;
} /* Name.Class */
#deepseek_chatbot .highlight .no {
color: #66d9ef;
} /* Name.Constant */
#deepseek_chatbot .highlight .nd {
color: #a6e22e;
} /* Name.Decorator */
#deepseek_chatbot .highlight .ni {
color: #f8f8f2;
} /* Name.Entity */
#deepseek_chatbot .highlight .ne {
color: #a6e22e;
} /* Name.Exception */
#deepseek_chatbot .highlight .nf {
color: #a6e22e;
} /* Name.Function */
#deepseek_chatbot .highlight .nl {
color: #f8f8f2;
} /* Name.Label */
#deepseek_chatbot .highlight .nn {
color: #f8f8f2;
} /* Name.Namespace */
#deepseek_chatbot .highlight .nx {
color: #a6e22e;
} /* Name.Other */
#deepseek_chatbot .highlight .py {
color: #f8f8f2;
} /* Name.Property */
#deepseek_chatbot .highlight .nt {
color: #f92672;
} /* Name.Tag */
#deepseek_chatbot .highlight .nv {
color: #f8f8f2;
} /* Name.Variable */
#deepseek_chatbot .highlight .ow {
color: #f92672;
} /* Operator.Word */
#deepseek_chatbot .highlight .w {
color: #f8f8f2;
} /* Text.Whitespace */
#deepseek_chatbot .highlight .mb {
color: #ae81ff;
} /* Literal.Number.Bin */
#deepseek_chatbot .highlight .mf {
color: #ae81ff;
} /* Literal.Number.Float */
#deepseek_chatbot .highlight .mh {
color: #ae81ff;
} /* Literal.Number.Hex */
#deepseek_chatbot .highlight .mi {
color: #ae81ff;
} /* Literal.Number.Integer */
#deepseek_chatbot .highlight .mo {
color: #ae81ff;
} /* Literal.Number.Oct */
#deepseek_chatbot .highlight .sa {
color: #e6db74;
} /* Literal.String.Affix */
#deepseek_chatbot .highlight .sb {
color: #e6db74;
} /* Literal.String.Backtick */
#deepseek_chatbot .highlight .sc {
color: #e6db74;
} /* Literal.String.Char */
#deepseek_chatbot .highlight .dl {
color: #e6db74;
} /* Literal.String.Delimiter */
#deepseek_chatbot .highlight .sd {
color: #e6db74;
} /* Literal.String.Doc */
#deepseek_chatbot .highlight .s2 {
color: #e6db74;
} /* Literal.String.Double */
#deepseek_chatbot .highlight .se {
color: #ae81ff;
} /* Literal.String.Escape */
#deepseek_chatbot .highlight .sh {
color: #e6db74;
} /* Literal.String.Heredoc */
#deepseek_chatbot .highlight .si {
color: #e6db74;
} /* Literal.String.Interpol */
#deepseek_chatbot .highlight .sx {
color: #e6db74;
} /* Literal.String.Other */
#deepseek_chatbot .highlight .sr {
color: #e6db74;
} /* Literal.String.Regex */
#deepseek_chatbot .highlight .s1 {
color: #e6db74;
} /* Literal.String.Single */
#deepseek_chatbot .highlight .ss {
color: #e6db74;
} /* Literal.String.Symbol */
#deepseek_chatbot .highlight .bp {
color: #f8f8f2;
} /* Name.Builtin.Pseudo */
#deepseek_chatbot .highlight .fm {
color: #a6e22e;
} /* Name.Function.Magic */
#deepseek_chatbot .highlight .vc {
color: #f8f8f2;
} /* Name.Variable.Class */
#deepseek_chatbot .highlight .vg {
color: #f8f8f2;
} /* Name.Variable.Global */
#deepseek_chatbot .highlight .vi {
color: #f8f8f2;
} /* Name.Variable.Instance */
#deepseek_chatbot .highlight .vm {
color: #f8f8f2;
} /* Name.Variable.Magic */
#deepseek_chatbot .highlight .il {
color: #ae81ff;
} /* Literal.Number.Integer.Long */

View File

@ -0,0 +1,22 @@
/**
* Copyright (c) 2023-2024 DeepSeek.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
// custom javascript here

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 153 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 266 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

168
deepseek_vl/serve/inference.py Executable file
View File

@ -0,0 +1,168 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
from threading import Thread
from typing import List
import torch
import transformers
from transformers import (
AutoModelForCausalLM,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer,
)
from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor
from deepseek_vl.utils.conversation import Conversation
def load_model(model_path):
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
return tokenizer, vl_gpt, vl_chat_processor
def convert_conversation_to_prompts(conversation: Conversation):
prompts = []
messages = conversation.messages
for i in range(0, len(messages), 2):
prompt = {
"role": messages[i][0],
"content": messages[i][1][0]
if isinstance(messages[i][1], tuple)
else messages[i][1],
"images": [messages[i][1][1]] if isinstance(messages[i][1], tuple) else [],
}
response = {"role": messages[i + 1][0], "content": messages[i + 1][1]}
prompts.extend([prompt, response])
return prompts
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=1):
super().__init__()
self.stops = [stop.to("cuda") for stop in stops]
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs
):
for stop in self.stops:
if input_ids.shape[-1] < len(stop):
continue
if torch.all((stop == input_ids[0][-len(stop) :])).item():
return True
return False
@torch.inference_mode()
def deepseek_generate(
prompts: list,
vl_gpt: torch.nn.Module,
vl_chat_processor,
tokenizer: transformers.PreTrainedTokenizer,
stop_words: list,
max_length: int = 256,
temperature: float = 1.0,
top_p: float = 1.0,
repetition_penalty=1.1,
):
prompts = prompts
pil_images = list()
for message in prompts:
if "images" not in message:
continue
for pil_img in message["images"]:
pil_images.append(pil_img)
prepare_inputs = vl_chat_processor(
conversations=prompts, images=pil_images, force_batchify=True
).to(vl_gpt.device)
return generate(
vl_gpt,
tokenizer,
prepare_inputs,
max_length,
temperature,
repetition_penalty,
top_p,
stop_words,
)
@torch.inference_mode()
def generate(
vl_gpt,
tokenizer,
prepare_inputs,
max_gen_len: int = 256,
temperature: float = 0,
repetition_penalty=1.1,
top_p: float = 0.95,
stop_words: List[str] = [],
):
"""Stream the text output from the multimodality model with prompt and image inputs."""
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
streamer = TextIteratorStreamer(tokenizer)
stop_words_ids = [
torch.tensor(tokenizer.encode(stop_word)) for stop_word in stop_words
]
stopping_criteria = StoppingCriteriaList(
[StoppingCriteriaSub(stops=stop_words_ids)]
)
generation_config = dict(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=max_gen_len,
do_sample=True,
use_cache=True,
streamer=streamer,
stopping_criteria=stopping_criteria,
)
if temperature > 0:
generation_config.update(
{
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"repetition_penalty": repetition_penalty,
}
)
else:
generation_config["do_sample"] = False
thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config)
thread.start()
yield from streamer

BIN
images/gradio_demo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 679 KiB

View File

@ -1,37 +1,52 @@
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import torch
from transformers import AutoModelForCausalLM
from deepseek_vl.models import VLChatProcessor, MultiModalityCausalLM
from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor
from deepseek_vl.utils.io import load_pil_images
# specify the path to the model
model_path = "deepseek-ai/deepseek-vl-7b-chat"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True)
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
conversation = [
{
"role": "User",
"content": "<image_placeholder>Describe each stage of this image.",
"images": ["./images/training_pipelines.jpg"]
"images": ["./images/training_pipelines.jpg"],
},
{
"role": "Assistant",
"content": ""
}
{"role": "Assistant", "content": ""},
]
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation,
images=pil_images,
force_batchify=True
conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# run image encoder to get the image embeddings
@ -46,7 +61,7 @@ outputs = vl_gpt.language_model.generate(
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True
use_cache=True,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)

View File

@ -10,17 +10,30 @@ authors = [{name = "DeepSeek-AI"}]
license = {file = "LICENSE-CODE"}
urls = {homepage = "https://github.com/deepseek-ai/DeepSeek-VL"}
readme = "README.md"
requires-python = ">=3.8"
requires-python = ">=3.8, <3.10"
dependencies = [
"torch>=2.0.1",
"transformers>=4.38.2",
"timm>=0.9.16",
"gradio>=4.13.0",
"accelerate",
"sentencepiece",
"attrdict",
"einops",
]
[project.optional-dependencies]
gradio = [
"gradio==3.48.0",
"gradio-client==0.6.1",
"mdtex2html==1.3.0",
"pypinyin==0.50.0",
"tiktoken==0.5.2",
"tqdm==4.64.0",
"colorama==0.4.5",
"Pygments==2.12.0",
"markdown==3.4.1",
"SentencePiece==0.1.96"
]
[tool.setuptools]
packages = {find = {exclude = ["images"]}}

View File

@ -1,8 +1,19 @@
torch>=2.0.1
torch==2.0.1
transformers>=4.38.2
timm>=0.9.16
gradio>=4.13.0
accelerate
sentencepiece
attrdict
einops
# for gradio demo
gradio==3.48.0
gradio-client==0.6.1
mdtex2html==1.3.0
pypinyin==0.50.0
tiktoken==0.5.2
tqdm==4.64.0
colorama==0.4.5
Pygments==2.12.0
markdown==3.4.1
SentencePiece==0.1.96