mirror of
https://github.com/deepseek-ai/DeepSeek-VL
synced 2024-11-27 22:43:38 +00:00
515 lines
17 KiB
Python
515 lines
17 KiB
Python
|
# Copyright (c) 2023-2024 DeepSeek.
|
||
|
#
|
||
|
# Permission is hereby granted, free of charge, to any person obtaining a copy of
|
||
|
# this software and associated documentation files (the "Software"), to deal in
|
||
|
# the Software without restriction, including without limitation the rights to
|
||
|
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
|
||
|
# the Software, and to permit persons to whom the Software is furnished to do so,
|
||
|
# subject to the following conditions:
|
||
|
#
|
||
|
# The above copyright notice and this permission notice shall be included in all
|
||
|
# copies or substantial portions of the Software.
|
||
|
#
|
||
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
|
||
|
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
|
||
|
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
|
||
|
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
# -*- coding:utf-8 -*-
|
||
|
|
||
|
import base64
|
||
|
from io import BytesIO
|
||
|
|
||
|
import gradio as gr
|
||
|
import torch
|
||
|
from app_modules.gradio_utils import (
|
||
|
cancel_outputing,
|
||
|
delete_last_conversation,
|
||
|
reset_state,
|
||
|
reset_textbox,
|
||
|
transfer_input,
|
||
|
wrap_gen_fn,
|
||
|
)
|
||
|
from app_modules.overwrites import reload_javascript
|
||
|
from app_modules.presets import CONCURRENT_COUNT, description, description_top, title
|
||
|
from app_modules.utils import configure_logger, is_variable_assigned, strip_stop_words
|
||
|
|
||
|
from deepseek_vl.serve.inference import (
|
||
|
convert_conversation_to_prompts,
|
||
|
deepseek_generate,
|
||
|
load_model,
|
||
|
)
|
||
|
from deepseek_vl.utils.conversation import SeparatorStyle
|
||
|
|
||
|
|
||
|
def load_models():
|
||
|
models = {
|
||
|
"DeepSeek-VL 7B": "deepseek-ai/deepseek-vl-7b-chat",
|
||
|
}
|
||
|
|
||
|
for model_name in models:
|
||
|
models[model_name] = load_model(models[model_name])
|
||
|
|
||
|
return models
|
||
|
|
||
|
|
||
|
logger = configure_logger()
|
||
|
models = load_models()
|
||
|
MODELS = sorted(list(models.keys()))
|
||
|
|
||
|
|
||
|
def generate_prompt_with_history(
|
||
|
text, image, history, vl_chat_processor, tokenizer, max_length=2048
|
||
|
):
|
||
|
"""
|
||
|
Generate a prompt with history for the deepseek application.
|
||
|
|
||
|
Args:
|
||
|
text (str): The text prompt.
|
||
|
image (str): The image prompt.
|
||
|
history (list): List of previous conversation messages.
|
||
|
tokenizer: The tokenizer used for encoding the prompt.
|
||
|
max_length (int): The maximum length of the prompt.
|
||
|
|
||
|
Returns:
|
||
|
tuple: A tuple containing the generated prompt, image list, conversation, and conversation copy. If the prompt could not be generated within the max_length limit, returns None.
|
||
|
"""
|
||
|
|
||
|
sft_format = "deepseek"
|
||
|
user_role_ind = 0
|
||
|
bot_role_ind = 1
|
||
|
|
||
|
# Initialize conversation
|
||
|
conversation = vl_chat_processor.new_chat_template()
|
||
|
|
||
|
if history:
|
||
|
conversation.messages = history
|
||
|
|
||
|
if image is not None:
|
||
|
if "<image_placeholder>" not in text:
|
||
|
text = (
|
||
|
"<image_placeholder>" + "\n" + text
|
||
|
) # append the <image_placeholder> in a new line after the text prompt
|
||
|
text = (text, image)
|
||
|
|
||
|
conversation.append_message(conversation.roles[user_role_ind], text)
|
||
|
conversation.append_message(conversation.roles[bot_role_ind], "")
|
||
|
|
||
|
# Create a copy of the conversation to avoid history truncation in the UI
|
||
|
conversation_copy = conversation.copy()
|
||
|
logger.info("=" * 80)
|
||
|
logger.info(get_prompt(conversation))
|
||
|
|
||
|
rounds = len(conversation.messages) // 2
|
||
|
|
||
|
for _ in range(rounds):
|
||
|
current_prompt = get_prompt(conversation)
|
||
|
current_prompt = (
|
||
|
current_prompt.replace("</s>", "")
|
||
|
if sft_format == "deepseek"
|
||
|
else current_prompt
|
||
|
)
|
||
|
|
||
|
if torch.tensor(tokenizer.encode(current_prompt)).size(-1) <= max_length:
|
||
|
return conversation_copy
|
||
|
|
||
|
if len(conversation.messages) % 2 != 0:
|
||
|
gr.Error("The messages between user and assistant are not paired.")
|
||
|
return
|
||
|
|
||
|
try:
|
||
|
for _ in range(2): # pop out two messages in a row
|
||
|
conversation.messages.pop(0)
|
||
|
except IndexError:
|
||
|
gr.Error("Input text processing failed, unable to respond in this round.")
|
||
|
return None
|
||
|
|
||
|
gr.Error("Prompt could not be generated within max_length limit.")
|
||
|
return None
|
||
|
|
||
|
|
||
|
def to_gradio_chatbot(conv):
|
||
|
"""Convert the conversation to gradio chatbot format."""
|
||
|
ret = []
|
||
|
for i, (role, msg) in enumerate(conv.messages[conv.offset :]):
|
||
|
if i % 2 == 0:
|
||
|
if type(msg) is tuple:
|
||
|
msg, image = msg
|
||
|
if isinstance(image, str):
|
||
|
with open(image, "rb") as f:
|
||
|
data = f.read()
|
||
|
img_b64_str = base64.b64encode(data).decode()
|
||
|
image_str = f'<video src="data:video/mp4;base64,{img_b64_str}" controls width="426" height="240"></video>'
|
||
|
msg = msg.replace("\n".join(["<image_placeholder>"] * 4), image_str)
|
||
|
else:
|
||
|
max_hw, min_hw = max(image.size), min(image.size)
|
||
|
aspect_ratio = max_hw / min_hw
|
||
|
max_len, min_len = 800, 400
|
||
|
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
||
|
longest_edge = int(shortest_edge * aspect_ratio)
|
||
|
W, H = image.size
|
||
|
if H > W:
|
||
|
H, W = longest_edge, shortest_edge
|
||
|
else:
|
||
|
H, W = shortest_edge, longest_edge
|
||
|
image = image.resize((W, H))
|
||
|
buffered = BytesIO()
|
||
|
image.save(buffered, format="JPEG")
|
||
|
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
||
|
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
||
|
msg = msg.replace("<image_placeholder>", img_str)
|
||
|
ret.append([msg, None])
|
||
|
else:
|
||
|
ret[-1][-1] = msg
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def to_gradio_history(conv):
|
||
|
"""Convert the conversation to gradio history state."""
|
||
|
return conv.messages[conv.offset :]
|
||
|
|
||
|
|
||
|
def get_prompt(conv) -> str:
|
||
|
"""Get the prompt for generation."""
|
||
|
system_prompt = conv.system_template.format(system_message=conv.system_message)
|
||
|
if conv.sep_style == SeparatorStyle.DeepSeek:
|
||
|
seps = [conv.sep, conv.sep2]
|
||
|
if system_prompt == "" or system_prompt is None:
|
||
|
ret = ""
|
||
|
else:
|
||
|
ret = system_prompt + seps[0]
|
||
|
for i, (role, message) in enumerate(conv.messages):
|
||
|
if message:
|
||
|
if type(message) is tuple: # multimodal message
|
||
|
message, _ = message
|
||
|
ret += role + ": " + message + seps[i % 2]
|
||
|
else:
|
||
|
ret += role + ":"
|
||
|
return ret
|
||
|
else:
|
||
|
return conv.get_prompt
|
||
|
|
||
|
|
||
|
@wrap_gen_fn
|
||
|
def predict(
|
||
|
text,
|
||
|
image,
|
||
|
chatbot,
|
||
|
history,
|
||
|
top_p,
|
||
|
temperature,
|
||
|
repetition_penalty,
|
||
|
max_length_tokens,
|
||
|
max_context_length_tokens,
|
||
|
model_select_dropdown,
|
||
|
):
|
||
|
"""
|
||
|
Function to predict the response based on the user's input and selected model.
|
||
|
|
||
|
Parameters:
|
||
|
user_text (str): The input text from the user.
|
||
|
user_image (str): The input image from the user.
|
||
|
chatbot (str): The chatbot's name.
|
||
|
history (str): The history of the chat.
|
||
|
top_p (float): The top-p parameter for the model.
|
||
|
temperature (float): The temperature parameter for the model.
|
||
|
max_length_tokens (int): The maximum length of tokens for the model.
|
||
|
max_context_length_tokens (int): The maximum length of context tokens for the model.
|
||
|
model_select_dropdown (str): The selected model from the dropdown.
|
||
|
|
||
|
Returns:
|
||
|
generator: A generator that yields the chatbot outputs, history, and status.
|
||
|
"""
|
||
|
print("running the prediction function")
|
||
|
try:
|
||
|
tokenizer, vl_gpt, vl_chat_processor = models[model_select_dropdown]
|
||
|
|
||
|
if text == "":
|
||
|
yield chatbot, history, "Empty context."
|
||
|
return
|
||
|
except KeyError:
|
||
|
yield [[text, "No Model Found"]], [], "No Model Found"
|
||
|
return
|
||
|
|
||
|
conversation = generate_prompt_with_history(
|
||
|
text,
|
||
|
image,
|
||
|
history,
|
||
|
vl_chat_processor,
|
||
|
tokenizer,
|
||
|
max_length=max_context_length_tokens,
|
||
|
)
|
||
|
prompts = convert_conversation_to_prompts(conversation)
|
||
|
|
||
|
stop_words = conversation.stop_str
|
||
|
gradio_chatbot_output = to_gradio_chatbot(conversation)
|
||
|
|
||
|
full_response = ""
|
||
|
with torch.no_grad():
|
||
|
for x in deepseek_generate(
|
||
|
prompts=prompts,
|
||
|
vl_gpt=vl_gpt,
|
||
|
vl_chat_processor=vl_chat_processor,
|
||
|
tokenizer=tokenizer,
|
||
|
stop_words=stop_words,
|
||
|
max_length=max_length_tokens,
|
||
|
temperature=temperature,
|
||
|
repetition_penalty=repetition_penalty,
|
||
|
top_p=top_p,
|
||
|
):
|
||
|
full_response += x
|
||
|
response = strip_stop_words(full_response, stop_words)
|
||
|
conversation.update_last_message(response)
|
||
|
gradio_chatbot_output[-1][1] = response
|
||
|
yield gradio_chatbot_output, to_gradio_history(
|
||
|
conversation
|
||
|
), "Generating..."
|
||
|
|
||
|
print("flushed result to gradio")
|
||
|
torch.cuda.empty_cache()
|
||
|
|
||
|
if is_variable_assigned("x"):
|
||
|
print(f"{model_select_dropdown}:\n{text}\n{'-' * 80}\n{x}\n{'=' * 80}")
|
||
|
print(
|
||
|
f"temperature: {temperature}, top_p: {top_p}, repetition_penalty: {repetition_penalty}, max_length_tokens: {max_length_tokens}"
|
||
|
)
|
||
|
|
||
|
yield gradio_chatbot_output, to_gradio_history(conversation), "Generate: Success"
|
||
|
|
||
|
|
||
|
def retry(
|
||
|
text,
|
||
|
image,
|
||
|
chatbot,
|
||
|
history,
|
||
|
top_p,
|
||
|
temperature,
|
||
|
repetition_penalty,
|
||
|
max_length_tokens,
|
||
|
max_context_length_tokens,
|
||
|
model_select_dropdown,
|
||
|
):
|
||
|
if len(history) == 0:
|
||
|
yield (chatbot, history, "Empty context")
|
||
|
return
|
||
|
|
||
|
chatbot.pop()
|
||
|
history.pop()
|
||
|
text = history.pop()[-1]
|
||
|
if type(text) is tuple:
|
||
|
text, image = text
|
||
|
|
||
|
yield from predict(
|
||
|
text,
|
||
|
image,
|
||
|
chatbot,
|
||
|
history,
|
||
|
top_p,
|
||
|
temperature,
|
||
|
repetition_penalty,
|
||
|
max_length_tokens,
|
||
|
max_context_length_tokens,
|
||
|
model_select_dropdown,
|
||
|
)
|
||
|
|
||
|
|
||
|
def build_demo(MODELS):
|
||
|
with open("deepseek_vl/serve/assets/custom.css", "r", encoding="utf-8") as f:
|
||
|
customCSS = f.read()
|
||
|
|
||
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
||
|
history = gr.State([])
|
||
|
input_text = gr.State()
|
||
|
input_image = gr.State()
|
||
|
|
||
|
with gr.Row():
|
||
|
gr.HTML(title)
|
||
|
status_display = gr.Markdown("Success", elem_id="status_display")
|
||
|
gr.Markdown(description_top)
|
||
|
|
||
|
with gr.Row(equal_height=True):
|
||
|
with gr.Column(scale=4):
|
||
|
with gr.Row():
|
||
|
chatbot = gr.Chatbot(
|
||
|
elem_id="deepseek_chatbot",
|
||
|
show_share_button=True,
|
||
|
likeable=True,
|
||
|
bubble_full_width=False,
|
||
|
height=600,
|
||
|
)
|
||
|
with gr.Row():
|
||
|
with gr.Column(scale=4):
|
||
|
text_box = gr.Textbox(
|
||
|
show_label=False, placeholder="Enter text", container=False
|
||
|
)
|
||
|
with gr.Column(
|
||
|
min_width=70,
|
||
|
):
|
||
|
submitBtn = gr.Button("Send")
|
||
|
with gr.Column(
|
||
|
min_width=70,
|
||
|
):
|
||
|
cancelBtn = gr.Button("Stop")
|
||
|
with gr.Row():
|
||
|
emptyBtn = gr.Button(
|
||
|
"🧹 New Conversation",
|
||
|
)
|
||
|
retryBtn = gr.Button("🔄 Regenerate")
|
||
|
delLastBtn = gr.Button("🗑️ Remove Last Turn")
|
||
|
|
||
|
with gr.Column():
|
||
|
image_box = gr.Image(type="pil")
|
||
|
|
||
|
with gr.Tab(label="Parameter Setting") as parameter_row:
|
||
|
top_p = gr.Slider(
|
||
|
minimum=-0,
|
||
|
maximum=1.0,
|
||
|
value=0.95,
|
||
|
step=0.05,
|
||
|
interactive=True,
|
||
|
label="Top-p",
|
||
|
)
|
||
|
temperature = gr.Slider(
|
||
|
minimum=0,
|
||
|
maximum=1.0,
|
||
|
value=0.1,
|
||
|
step=0.1,
|
||
|
interactive=True,
|
||
|
label="Temperature",
|
||
|
)
|
||
|
repetition_penalty = gr.Slider(
|
||
|
minimum=0.0,
|
||
|
maximum=2.0,
|
||
|
value=1.1,
|
||
|
step=0.1,
|
||
|
interactive=True,
|
||
|
label="Repetition penalty",
|
||
|
)
|
||
|
max_length_tokens = gr.Slider(
|
||
|
minimum=0,
|
||
|
maximum=4096,
|
||
|
value=2048,
|
||
|
step=8,
|
||
|
interactive=True,
|
||
|
label="Max Generation Tokens",
|
||
|
)
|
||
|
max_context_length_tokens = gr.Slider(
|
||
|
minimum=0,
|
||
|
maximum=4096,
|
||
|
value=4096,
|
||
|
step=128,
|
||
|
interactive=True,
|
||
|
label="Max History Tokens",
|
||
|
)
|
||
|
model_select_dropdown = gr.Dropdown(
|
||
|
label="Select Models",
|
||
|
choices=MODELS,
|
||
|
multiselect=False,
|
||
|
value=MODELS[0],
|
||
|
interactive=True,
|
||
|
)
|
||
|
|
||
|
examples_list = [
|
||
|
[
|
||
|
"deepseek_vl/serve/examples/rap.jpeg",
|
||
|
"Can you write me a master rap song that rhymes very well based on this image?",
|
||
|
],
|
||
|
[
|
||
|
"deepseek_vl/serve/examples/app.png",
|
||
|
"What is this app about?",
|
||
|
],
|
||
|
[
|
||
|
"deepseek_vl/serve/examples/pipeline.png",
|
||
|
"Help me write a python code based on the image.",
|
||
|
],
|
||
|
[
|
||
|
"deepseek_vl/serve/examples/chart.png",
|
||
|
"Could you help me to re-draw this picture with python codes?",
|
||
|
],
|
||
|
[
|
||
|
"deepseek_vl/serve/examples/mirror.png",
|
||
|
"How many people are there in the image. Why?",
|
||
|
],
|
||
|
[
|
||
|
"deepseek_vl/serve/examples/puzzle.png",
|
||
|
"Can this 2 pieces combine together?",
|
||
|
],
|
||
|
]
|
||
|
gr.Examples(examples=examples_list, inputs=[image_box, text_box])
|
||
|
gr.Markdown(description)
|
||
|
|
||
|
input_widgets = [
|
||
|
input_text,
|
||
|
input_image,
|
||
|
chatbot,
|
||
|
history,
|
||
|
top_p,
|
||
|
temperature,
|
||
|
repetition_penalty,
|
||
|
max_length_tokens,
|
||
|
max_context_length_tokens,
|
||
|
model_select_dropdown,
|
||
|
]
|
||
|
output_widgets = [chatbot, history, status_display]
|
||
|
|
||
|
transfer_input_args = dict(
|
||
|
fn=transfer_input,
|
||
|
inputs=[text_box, image_box],
|
||
|
outputs=[input_text, input_image, text_box, image_box, submitBtn],
|
||
|
show_progress=True,
|
||
|
)
|
||
|
|
||
|
predict_args = dict(
|
||
|
fn=predict,
|
||
|
inputs=input_widgets,
|
||
|
outputs=output_widgets,
|
||
|
show_progress=True,
|
||
|
)
|
||
|
|
||
|
retry_args = dict(
|
||
|
fn=retry,
|
||
|
inputs=input_widgets,
|
||
|
outputs=output_widgets,
|
||
|
show_progress=True,
|
||
|
)
|
||
|
|
||
|
reset_args = dict(
|
||
|
fn=reset_textbox, inputs=[], outputs=[text_box, status_display]
|
||
|
)
|
||
|
|
||
|
predict_events = [
|
||
|
text_box.submit(**transfer_input_args).then(**predict_args),
|
||
|
submitBtn.click(**transfer_input_args).then(**predict_args),
|
||
|
]
|
||
|
|
||
|
emptyBtn.click(reset_state, outputs=output_widgets, show_progress=True)
|
||
|
emptyBtn.click(**reset_args)
|
||
|
retryBtn.click(**retry_args)
|
||
|
|
||
|
delLastBtn.click(
|
||
|
delete_last_conversation,
|
||
|
[chatbot, history],
|
||
|
output_widgets,
|
||
|
show_progress=True,
|
||
|
)
|
||
|
|
||
|
cancelBtn.click(cancel_outputing, [], [status_display], cancels=predict_events)
|
||
|
|
||
|
return demo
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
demo = build_demo(MODELS)
|
||
|
demo.title = "DeepSeek-VL Chatbot"
|
||
|
|
||
|
reload_javascript()
|
||
|
demo.queue(concurrency_count=CONCURRENT_COUNT).launch(
|
||
|
share=False,
|
||
|
favicon_path="deepseek_vl/serve/assets/favicon.ico",
|
||
|
inbrowser=False,
|
||
|
server_name="0.0.0.0",
|
||
|
server_port=8122,
|
||
|
)
|