DeepSeek-VL/inference.py

87 lines
3.3 KiB
Python
Raw Permalink Normal View History

# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
2024-03-08 06:34:44 +00:00
import torch
from transformers import AutoModelForCausalLM
from deepseek_vl.models import MultiModalityCausalLM, VLChatProcessor
2024-03-08 06:34:44 +00:00
from deepseek_vl.utils.io import load_pil_images
# specify the path to the model
model_path = "deepseek-ai/deepseek-vl-7b-chat"
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True
)
2024-03-08 06:34:44 +00:00
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
# single image conversation example
2024-03-08 06:34:44 +00:00
conversation = [
{
"role": "User",
"content": "<image_placeholder>Describe each stage of this image.",
"images": ["./images/training_pipelines.jpg"],
2024-03-08 06:34:44 +00:00
},
{"role": "Assistant", "content": ""},
2024-03-08 06:34:44 +00:00
]
# multiple images (or in-context learning) conversation example
# conversation = [
# {
# "role": "User",
# "content": "<image_placeholder>A dog wearing nothing in the foreground, "
# "<image_placeholder>a dog wearing a santa hat, "
# "<image_placeholder>a dog wearing a wizard outfit, and "
# "<image_placeholder>what's the dog wearing?",
# "images": [
# "images/dog_a.png",
# "images/dog_b.png",
# "images/dog_c.png",
# "images/dog_d.png",
# ],
# },
# {"role": "Assistant", "content": ""}
# ]
2024-03-08 06:34:44 +00:00
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
conversations=conversation, images=pil_images, force_batchify=True
2024-03-08 06:34:44 +00:00
).to(vl_gpt.device)
# run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# run the model to get the response
outputs = vl_gpt.language_model.generate(
inputs_embeds=inputs_embeds,
attention_mask=prepare_inputs.attention_mask,
pad_token_id=tokenizer.eos_token_id,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
do_sample=False,
use_cache=True,
2024-03-08 06:34:44 +00:00
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)