2024-12-26 11:01:57 +00:00
|
|
|
import os
|
|
|
|
import json
|
|
|
|
from argparse import ArgumentParser
|
|
|
|
from glob import glob
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
import torch
|
|
|
|
from safetensors.torch import load_file, save_file
|
|
|
|
|
|
|
|
from kernel import weight_dequant
|
|
|
|
|
|
|
|
def main(fp8_path, bf16_path):
|
2025-01-05 18:18:18 +00:00
|
|
|
"""
|
|
|
|
Converts FP8 weights to BF16 and saves the converted weights.
|
|
|
|
|
|
|
|
This function reads FP8 weights from the specified directory, converts them to BF16,
|
|
|
|
and saves the converted weights to another specified directory. It also updates the
|
|
|
|
model index file to reflect the changes.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
fp8_path (str): The path to the directory containing the FP8 weights and model index file.
|
|
|
|
bf16_path (str): The path to the directory where the converted BF16 weights will be saved.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
KeyError: If a required scale_inv tensor is missing for a weight.
|
|
|
|
|
|
|
|
Notes:
|
|
|
|
- The function assumes that the FP8 weights are stored in safetensor files.
|
|
|
|
- The function caches loaded safetensor files to optimize memory usage.
|
|
|
|
- The function updates the model index file to remove references to scale_inv tensors.
|
|
|
|
"""
|
2024-12-26 11:01:57 +00:00
|
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
|
|
os.makedirs(bf16_path, exist_ok=True)
|
|
|
|
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
|
|
|
|
with open(model_index_file, "r") as f:
|
|
|
|
model_index = json.load(f)
|
|
|
|
weight_map = model_index["weight_map"]
|
|
|
|
|
2024-12-27 01:34:38 +00:00
|
|
|
# Cache for loaded safetensor files
|
|
|
|
loaded_files = {}
|
|
|
|
fp8_weight_names = []
|
|
|
|
|
|
|
|
# Helper function to get tensor from the correct file
|
|
|
|
def get_tensor(tensor_name):
|
2025-01-05 18:18:18 +00:00
|
|
|
"""
|
|
|
|
Retrieves a tensor from the cached safetensor files or loads it from disk if not cached.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tensor_name (str): The name of the tensor to retrieve.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
torch.Tensor: The retrieved tensor.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
KeyError: If the tensor does not exist in the safetensor file.
|
|
|
|
"""
|
2024-12-27 01:34:38 +00:00
|
|
|
file_name = weight_map[tensor_name]
|
|
|
|
if file_name not in loaded_files:
|
|
|
|
file_path = os.path.join(fp8_path, file_name)
|
|
|
|
loaded_files[file_name] = load_file(file_path, device="cuda")
|
|
|
|
return loaded_files[file_name][tensor_name]
|
|
|
|
|
2024-12-26 11:01:57 +00:00
|
|
|
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
|
2024-12-27 01:34:38 +00:00
|
|
|
safetensor_files.sort()
|
2024-12-26 11:01:57 +00:00
|
|
|
for safetensor_file in tqdm(safetensor_files):
|
|
|
|
file_name = os.path.basename(safetensor_file)
|
2024-12-27 01:34:38 +00:00
|
|
|
current_state_dict = load_file(safetensor_file, device="cuda")
|
|
|
|
loaded_files[file_name] = current_state_dict
|
|
|
|
|
2024-12-26 11:01:57 +00:00
|
|
|
new_state_dict = {}
|
2024-12-27 01:34:38 +00:00
|
|
|
for weight_name, weight in current_state_dict.items():
|
2024-12-26 11:01:57 +00:00
|
|
|
if weight_name.endswith("_scale_inv"):
|
|
|
|
continue
|
2024-12-27 01:34:38 +00:00
|
|
|
elif weight.element_size() == 1: # FP8 weight
|
2024-12-26 11:01:57 +00:00
|
|
|
scale_inv_name = f"{weight_name}_scale_inv"
|
2024-12-27 01:34:38 +00:00
|
|
|
try:
|
|
|
|
# Get scale_inv from the correct file
|
|
|
|
scale_inv = get_tensor(scale_inv_name)
|
|
|
|
fp8_weight_names.append(weight_name)
|
|
|
|
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
|
|
|
|
except KeyError:
|
|
|
|
print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
|
|
|
|
new_state_dict[weight_name] = weight
|
2024-12-26 11:01:57 +00:00
|
|
|
else:
|
|
|
|
new_state_dict[weight_name] = weight
|
2024-12-27 01:34:38 +00:00
|
|
|
|
2024-12-26 11:01:57 +00:00
|
|
|
new_safetensor_file = os.path.join(bf16_path, file_name)
|
|
|
|
save_file(new_state_dict, new_safetensor_file)
|
2024-12-27 01:34:38 +00:00
|
|
|
|
|
|
|
# Memory management: keep only the 2 most recently used files
|
|
|
|
if len(loaded_files) > 2:
|
|
|
|
oldest_file = next(iter(loaded_files))
|
|
|
|
del loaded_files[oldest_file]
|
|
|
|
torch.cuda.empty_cache()
|
2024-12-26 11:01:57 +00:00
|
|
|
|
2024-12-27 01:34:38 +00:00
|
|
|
# Update model index
|
2024-12-26 11:01:57 +00:00
|
|
|
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
|
|
|
|
for weight_name in fp8_weight_names:
|
|
|
|
scale_inv_name = f"{weight_name}_scale_inv"
|
2024-12-27 01:34:38 +00:00
|
|
|
if scale_inv_name in weight_map:
|
|
|
|
weight_map.pop(scale_inv_name)
|
2024-12-26 11:01:57 +00:00
|
|
|
with open(new_model_index_file, "w") as f:
|
|
|
|
json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser.add_argument("--input-fp8-hf-path", type=str, required=True)
|
|
|
|
parser.add_argument("--output-bf16-hf-path", type=str, required=True)
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args.input_fp8_hf_path, args.output_bf16_hf_path)
|
2024-12-27 01:34:38 +00:00
|
|
|
|