mirror of
https://github.com/deepseek-ai/DeepSeek-V3
synced 2025-01-22 12:25:30 +00:00
handle missing scale_inv_name (#2)
* handle missing scale_inv_name Fixed an issue where `weight` and `weight_scale_inv` (e.g. `model.layers.39.mlp.experts.92.gate_proj.weight` and `model.layers.39.mlp.experts.92.gate_proj.weight_scale_inv`) were not in the same SafeTensor, causing an assertion error due to scale_inv_name not being in the state_dict. * sort filename to reduce memory costs * Add CUDA cache clearing in memory management Added torch.cuda.empty_cache() to free up unused memory on the GPU,
This commit is contained in:
parent
c8087bd8b8
commit
8f1c9488b5
@ -16,32 +16,58 @@ def main(fp8_path, bf16_path):
|
||||
with open(model_index_file, "r") as f:
|
||||
model_index = json.load(f)
|
||||
weight_map = model_index["weight_map"]
|
||||
fp8_weight_names = []
|
||||
|
||||
# Cache for loaded safetensor files
|
||||
loaded_files = {}
|
||||
fp8_weight_names = []
|
||||
|
||||
# Helper function to get tensor from the correct file
|
||||
def get_tensor(tensor_name):
|
||||
file_name = weight_map[tensor_name]
|
||||
if file_name not in loaded_files:
|
||||
file_path = os.path.join(fp8_path, file_name)
|
||||
loaded_files[file_name] = load_file(file_path, device="cuda")
|
||||
return loaded_files[file_name][tensor_name]
|
||||
|
||||
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
|
||||
safetensor_files.sort()
|
||||
for safetensor_file in tqdm(safetensor_files):
|
||||
file_name = os.path.basename(safetensor_file)
|
||||
state_dict = load_file(safetensor_file, device="cuda")
|
||||
current_state_dict = load_file(safetensor_file, device="cuda")
|
||||
loaded_files[file_name] = current_state_dict
|
||||
|
||||
new_state_dict = {}
|
||||
for weight_name, weight in state_dict.items():
|
||||
for weight_name, weight in current_state_dict.items():
|
||||
if weight_name.endswith("_scale_inv"):
|
||||
continue
|
||||
elif weight.element_size() == 1:
|
||||
elif weight.element_size() == 1: # FP8 weight
|
||||
scale_inv_name = f"{weight_name}_scale_inv"
|
||||
assert scale_inv_name in state_dict
|
||||
fp8_weight_names.append(weight_name)
|
||||
scale_inv = state_dict[scale_inv_name]
|
||||
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
|
||||
try:
|
||||
# Get scale_inv from the correct file
|
||||
scale_inv = get_tensor(scale_inv_name)
|
||||
fp8_weight_names.append(weight_name)
|
||||
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
|
||||
except KeyError:
|
||||
print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
|
||||
new_state_dict[weight_name] = weight
|
||||
else:
|
||||
new_state_dict[weight_name] = weight
|
||||
|
||||
new_safetensor_file = os.path.join(bf16_path, file_name)
|
||||
save_file(new_state_dict, new_safetensor_file)
|
||||
|
||||
# Memory management: keep only the 2 most recently used files
|
||||
if len(loaded_files) > 2:
|
||||
oldest_file = next(iter(loaded_files))
|
||||
del loaded_files[oldest_file]
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# Update model index
|
||||
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
|
||||
for weight_name in fp8_weight_names:
|
||||
scale_inv_name = f"{weight_name}_scale_inv"
|
||||
assert scale_inv_name in weight_map
|
||||
weight_map.pop(scale_inv_name)
|
||||
if scale_inv_name in weight_map:
|
||||
weight_map.pop(scale_inv_name)
|
||||
with open(new_model_index_file, "w") as f:
|
||||
json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
|
||||
|
||||
@ -52,4 +78,4 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--output-bf16-hf-path", type=str, required=True)
|
||||
args = parser.parse_args()
|
||||
main(args.input_fp8_hf_path, args.output_bf16_hf_path)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user