DeepSeek-Coder/Evaluation/PAL-Math/README.md
2023-12-29 00:08:38 +08:00

2.9 KiB

1. Introduction

We provide a test script to evaluate the capability of the deepseek-coder model to solve mathematical problems using external tools (Python interpreter). We evaluate it using the PAL method on seven datasets: GSM8k, MATH, GSM-Hard, SVAMP, TabMWP, ASDiv, and MAWPS.

2. Setup

pip install sympy==1.12 pebble timeout-decorator transformers

3. Evaluation

We provide an example of testing the deepseek-coder-1.3b-base model on the gsm8k dataset using 8 GPUs. If you wish to use a different model or dataset, you can modify it as needed.

MODEL_NAME_OR_PATH=deepseek-ai/deepseek-coder-1.3b-base
DATA=gsm8k # 'math' 'gsm8k' 'gsm-hard' 'svamp' 'tabmwp' 'asdiv' 'mawps'
MODEL_DIR_NAME=${MODEL_NAME_OR_PATH##*/}
GPU_NUM=8
for rank in {0..7}; do
    CUDA_VISIBLE_DEVICES=$rank nohup  python run.py \
    --data_name ${DATA} \
    --model_name_or_path ${MODEL_NAME_OR_PATH} \
    --batch_size 16 \
    --do_inference \
    --rank $rank \
    --world_size $GPU_NUM 2>&1 &
done

# Wait for all processes to finish
wait
echo "All processes completed."
python run.py --do_eval --data_name ${DATA}  --model_name_or_path ${MODEL_NAME_OR_PATH}  --world_size $GPU_NUM | tee outputs/${MODEL_DIR_NAME}/${DATA}/result.out

4. Experimental Results

We report experimental results here for mathematical reasoning tasks by using python program. For all open-source models, we utilize this repository and test with the same prompt. We set the maximum input length to 2048 and the maximum output length to 512, and employ the greedy search strategy.

Model Size GSM8k MATH GSM-Hard SVAMP TabMWP ASDiv MAWPS Avg
CodeShell 7B 15.8% 8.6% 17.3% 35.5% 28.2% 44.4% 59.8% 29.9%
CodeGeex-2 7B 22.2% 9.7% 23.6% 39.0% 44.6% 48.5% 66.0% 36.2%
StarCoder-Base 16B 23.4% 10.3% 23.0% 42.4% 45.0% 54.9% 81.1% 40.0%
CodeLLama-Base 7B 31.2% 12.1% 30.2% 54.2% 52.9% 59.6% 82.6% 46.1%
CodeLLama-Base 13B 43.1% 14.4% 40.2% 59.2% 60.3% 63.6% 85.3% 52.3%
CodeLLama-Base 34B 58.2% 21.2% 51.8% 70.3% 69.8% 70.7% 91.8% 62.0%
DeepSeek-Coder-Base 1.3B 14.6% 16.8% 14.5% 36.7% 30.0% 48.2% 62.3% 31.9%
DeepSeek-Coder-MQA-Base 5.7B 38.8% 20.0% 36.8% 52.5% 55.9% 63.9% 84.8% 50.4%
DeepSeek-Coder-Base 6.7B 43.2% 19.2% 40.3% 58.4% 67.9% 67.2% 87.0% 54.7%
DeepSeek-Coder-Base 33B 60.7% 29.1% 54.1% 71.6% 75.3% 76.7% 93.3% 65.8%