support group_gemm_offset, group_gemm_offset_swapAB

This commit is contained in:
Wangzheee 2025-06-19 14:51:38 +00:00
parent 0c88cd0139
commit d29b20cd16
10 changed files with 1649 additions and 252 deletions

View File

@ -5,6 +5,7 @@ from .jit_kernels import (
gemm_fp8_fp8_bf16_nt,
m_grouped_gemm_fp8_fp8_bf16_nt_contiguous,
m_grouped_gemm_fp8_fp8_bf16_nt_masked,
m_grouped_gemm_fp8_fp8_bf16_nt_offset,
wgrad_gemm_fp8_fp8_fp32_nt,
k_grouped_wgrad_gemm_fp8_fp8_fp32_nt,
ceil_div,

View File

@ -438,7 +438,873 @@ fp8_gemm_kernel(float* scales_b, int* grouped_layout,
DG_DEVICE_ASSERT(false and "This kernel only support sm_90a");
#endif
}
template <uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t NUM_WARPS_PER_BLOCK>
static __device__ __forceinline__ void write_result_to_gmem(__nv_bfloat16* gmem_d_this_block,
__nv_bfloat16 const* smem_d, uint32_t const m_offset, uint32_t const m_boundary, uint32_t const n_offset,
uint32_t const shape_n, uint32_t const ld_output)
{
int warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
int lane_idx = threadIdx.x % 32;
constexpr int int4_per_tile_line = BLOCK_N * sizeof(__nv_bfloat16) / sizeof(int4);
int int4_per_global_line = shape_n * sizeof(__nv_bfloat16) / sizeof(int4);
constexpr auto num_lines = BLOCK_M;
constexpr auto num_warps = NUM_WARPS_PER_BLOCK;
int4 const* smem_d_int4 = reinterpret_cast<int4 const*>(smem_d);
bool is_last_n_block = n_offset + BLOCK_N > shape_n;
int int4_per_line = is_last_n_block ? int4_per_global_line % int4_per_tile_line : int4_per_tile_line;
for (int line_idx = warp_idx; line_idx < num_lines; line_idx += num_warps)
{
if (m_offset + line_idx >= m_boundary)
{
break;
}
for (int elem_idx = lane_idx; elem_idx < int4_per_line; elem_idx += 32)
{
uint64_t idx = (uint64_t) line_idx * ld_output + n_offset;
int4* g_data_addr = reinterpret_cast<int4*>(&gmem_d_this_block[idx]) + elem_idx;
int4 const* s_data_addr = &smem_d_int4[line_idx * (int4_per_tile_line) + elem_idx];
*g_data_addr = *s_data_addr;
}
__syncwarp();
}
}
template <uint32_t SHAPE_N, uint32_t SHAPE_K, uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t BLOCK_K, uint32_t kNumGroups,
uint32_t kNumStages, uint32_t kNumTMAThreads, uint32_t kNumMathThreadsPerGroup, uint32_t kNumTMAMulticast,
typename SchedulerType, typename InputType>
__global__ void __launch_bounds__(get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M), 1)
fp8_gemm_offset_kernel(__nv_bfloat16* gmem_d, float* scales_b, int64_t* offsets,
__grid_constant__ const CUtensorMap tensor_map_a, __grid_constant__ const CUtensorMap tensor_map_b,
__grid_constant__ const CUtensorMap tensor_map_scales_a, __grid_constant__ const CUtensorMap tensor_map_d)
{
#if (defined(__CUDA_ARCH__) and (__CUDA_ARCH__ == 900))
// Scaling checks
DG_STATIC_ASSERT(BLOCK_K == 128, "Only support per-128-channel FP8 scaling");
DG_STATIC_ASSERT(ceil_div(BLOCK_N, BLOCK_K) == 1, "Too much B scales in a single block");
InputType problem_input;
problem_input.problem_m_offsets = offsets;
// Types
using WGMMA = typename FP8MMASelector<BLOCK_N>::type;
using Barrier = cutlass::arch::ClusterTransactionBarrier;
// Shared memory
static constexpr int kMustUseUniformedScaleB = (BLOCK_K % BLOCK_N == 0);
static constexpr uint32_t SMEM_D_SIZE = BLOCK_M * BLOCK_N * sizeof(__nv_bfloat16);
static constexpr uint32_t SMEM_A_SIZE_PER_STAGE = BLOCK_M * BLOCK_K * sizeof(__nv_fp8_e4m3);
static constexpr uint32_t SMEM_B_SIZE_PER_STAGE = BLOCK_N * BLOCK_K * sizeof(__nv_fp8_e4m3);
static constexpr uint32_t SMEM_SCALES_A_SIZE_PER_STAGE = BLOCK_M * sizeof(float);
static constexpr uint32_t SHAPE_K_SCALES = ceil_div(SHAPE_K, BLOCK_K);
static constexpr uint32_t SMEM_SCALES_B_SIZE
= ceil_div<uint32_t>(SHAPE_K_SCALES * (kMustUseUniformedScaleB ? 1 : 2) * sizeof(float), sizeof(Barrier))
* sizeof(Barrier);
// Configs
constexpr uint32_t kFullKOfAllStages = kNumStages * BLOCK_K;
constexpr uint32_t kNumThreads = get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M);
constexpr uint32_t kNumMathThreads = kNumThreads - kNumTMAThreads;
constexpr uint32_t kNumIterations = ceil_div(SHAPE_K, kFullKOfAllStages);
uint32_t const warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
uint32_t const lane_idx = get_lane_id();
// Prefetch TMA descriptors at very beginning
if (threadIdx.x == kNumMathThreads)
{
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_a));
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_b));
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_scales_a));
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_d));
}
__syncwarp();
// Align to 1024 bytes for swizzle-128B
extern __shared__ __align__(1024) uint8_t smem_buffer[];
DG_STATIC_ASSERT(SMEM_D_SIZE % 1024 == 0, "Shared memory of A/B must be aligned to 1024 bytes");
// Data on shared memory
auto smem_d = reinterpret_cast<__nv_bfloat16*>(smem_buffer);
__nv_fp8_e4m3* smem_a[kNumStages];
__nv_fp8_e4m3* smem_b[kNumStages];
float* smem_scales_a[kNumStages];
float* smem_scales_b;
// TMA Barrier for both divisible and non-divisible cases
Barrier* full_barriers[kNumStages];
Barrier* empty_barriers[kNumStages];
// Fill shared memory pointers
#pragma unroll
for (int i = 0; i < kNumStages; ++i)
{
smem_a[i] = reinterpret_cast<__nv_fp8_e4m3*>(smem_buffer + SMEM_D_SIZE + i * SMEM_A_SIZE_PER_STAGE);
smem_b[i] = reinterpret_cast<__nv_fp8_e4m3*>(
smem_buffer + SMEM_D_SIZE + kNumStages * SMEM_A_SIZE_PER_STAGE + i * SMEM_B_SIZE_PER_STAGE);
smem_scales_a[i] = reinterpret_cast<float*>(smem_buffer + SMEM_D_SIZE
+ kNumStages * (SMEM_A_SIZE_PER_STAGE + SMEM_B_SIZE_PER_STAGE) + i * SMEM_SCALES_A_SIZE_PER_STAGE);
}
smem_scales_b = reinterpret_cast<float*>(smem_buffer + SMEM_D_SIZE
+ kNumStages * (SMEM_A_SIZE_PER_STAGE + SMEM_B_SIZE_PER_STAGE + SMEM_SCALES_A_SIZE_PER_STAGE));
// Fill barriers
auto barrier_start_ptr = reinterpret_cast<Barrier*>(reinterpret_cast<uint8_t*>(smem_scales_b) + SMEM_SCALES_B_SIZE);
#pragma unroll
for (int i = 0; i < kNumStages; ++i)
{
full_barriers[i] = barrier_start_ptr + i;
empty_barriers[i] = barrier_start_ptr + kNumStages + i;
}
// Initialize barriers
DG_STATIC_ASSERT(kNumTMAMulticast <= 32, "Too many TMA multicast");
if (threadIdx.x == kNumMathThreads)
{
#pragma unroll
for (int i = 0; i < kNumStages; ++i)
{
full_barriers[i]->init(1);
empty_barriers[i]->init(kNumTMAMulticast * kNumMathThreads / 32);
}
// Make initialized barrier visible in async proxy
cutlass::arch::fence_view_async_shared();
(kNumTMAMulticast > 1) ? cutlass::arch::fence_barrier_init() : void();
}
// Synchronize all threads to make barrier visible in normal memory model
(kNumTMAMulticast > 1) ? cute::cluster_sync() : __syncthreads();
// For pipeline unrolling
struct DivisibleK
{
};
struct NotDivisibleK
{
};
auto launch_k_iterations = [](auto const& func)
{
if constexpr (SHAPE_K % kFullKOfAllStages == 0)
{
for (int k_iter = 0; k_iter < kNumIterations; ++k_iter)
func(k_iter, DivisibleK{});
}
else
{
for (int k_iter = 0; k_iter < kNumIterations - 1; ++k_iter)
func(k_iter, DivisibleK{});
func(kNumIterations - 1, NotDivisibleK{});
}
};
// Register reconfigurations
constexpr int kNumTMARegisters = 40;
constexpr int kNumMathRegisters = 232;
// Block scheduler
uint32_t m_block_idx, n_block_idx;
auto scheduler = SchedulerType(problem_input);
if (threadIdx.x >= kNumMathThreads)
{
// TMA warp-group for loading data
cutlass::arch::warpgroup_reg_dealloc<kNumTMARegisters>();
// NOTES: only one thread (or warp) will be used
if (threadIdx.x == kNumMathThreads)
{
// Persistently schedule over blocks
while (scheduler.get_next_block(m_block_idx, n_block_idx))
{
launch_k_iterations(
[&](int k_iter, auto type)
{
constexpr bool kHasDivisibleStages = std::is_same_v<decltype(type), DivisibleK>;
constexpr int kNumInnerStages
= kHasDivisibleStages ? kNumStages : (SHAPE_K % kFullKOfAllStages) / BLOCK_K;
DG_STATIC_ASSERT(kNumInnerStages != 0, "Invalid number of inner stages");
#pragma unroll
for (uint32_t s = 0; s < kNumInnerStages; ++s)
{
// Wait consumer release
empty_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter + 1) & 1);
// Issue TMA A with broadcasting
auto& full_barrier = *full_barriers[s];
int k_idx = k_iter * kFullKOfAllStages + s * BLOCK_K;
tma_copy(&tensor_map_a, reinterpret_cast<uint64_t*>(&full_barrier),
smem_a[s], k_idx, scheduler.get_global_m_idx(m_block_idx), kNumTMAMulticast);
if constexpr (SchedulerType::gemm_type == GemmType::GroupedWithOffset)
{
tma_copy(&tensor_map_scales_a,
reinterpret_cast<uint64_t*>(&full_barrier), smem_scales_a[s],
scheduler.get_global_scales_a_idx(m_block_idx), k_idx / BLOCK_K, kNumTMAMulticast);
}
else
{
tma_copy(&tensor_map_scales_a,
reinterpret_cast<uint64_t*>(&full_barrier), smem_scales_a[s], m_block_idx * BLOCK_M,
scheduler.get_global_scales_a_idx(k_idx / BLOCK_K), kNumTMAMulticast);
}
// Issue TMA B without broadcasting
tma_copy(&tensor_map_b, reinterpret_cast<uint64_t*>(&full_barrier), smem_b[s], k_idx,
scheduler.get_global_n_idx(SHAPE_N, BLOCK_N, n_block_idx, m_block_idx), 1);
full_barrier.arrive_and_expect_tx(
SMEM_A_SIZE_PER_STAGE + SMEM_B_SIZE_PER_STAGE + SMEM_SCALES_A_SIZE_PER_STAGE);
}
// Wait unaligned cases
#pragma unroll
for (uint32_t s = kNumInnerStages; s < kNumStages; ++s)
{
empty_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter + 1) & 1);
full_barriers[s]->arrive();
}
});
}
// To safely deconstruct distributed shared barriers, we need another round of empty waits
if constexpr (kNumTMAMulticast > 1)
{
#pragma unroll
for (uint32_t s = 0; s < kNumStages; ++s)
empty_barriers[s]->wait((scheduler.current_iter * kNumIterations + 1) & 1);
}
}
}
else
{
// Math warp-groups for WGMMA
cutlass::arch::warpgroup_reg_alloc<kNumMathRegisters>();
// NOTES: use `__shfl_sync` to encourage NVCC to use unified registers
auto const math_wg_idx = __shfl_sync(0xffffffff, threadIdx.x / kNumMathThreadsPerGroup, 0);
auto const r_0 = warp_idx * 16 + lane_idx / 4, r_1 = r_0 + 8;
// Persistently schedule over blocks
while (scheduler.get_next_block(m_block_idx, n_block_idx))
{
// Decide the number of scales B to load
DG_STATIC_ASSERT(SHAPE_N % 8 == 0, "Invalid shape N");
uint32_t num_former_iters = BLOCK_N / 8, num_full_iters = num_former_iters;
if constexpr (not kMustUseUniformedScaleB)
{
num_former_iters = min(BLOCK_N, BLOCK_K - n_block_idx * BLOCK_N % BLOCK_K) / 8;
num_full_iters = min(SHAPE_N - n_block_idx * BLOCK_N, BLOCK_N) / 8;
}
uint32_t num_scales_b = SHAPE_K_SCALES * (num_former_iters >= num_full_iters ? 1 : 2);
// Load B scales with math warp-groups
// NOTES: except the first warp, we want to overlap loading B scales with TMA stores between tasks
if (threadIdx.x >= 32)
{
auto num_previous_lines
= scheduler.get_global_scales_b_idx(ceil_div(SHAPE_N, BLOCK_K), 0, 0, m_block_idx);
;
auto local_scales_b
= scales_b + (num_previous_lines + ((n_block_idx * BLOCK_N) / BLOCK_K)) * SHAPE_K_SCALES;
#pragma unroll
for (uint32_t i = threadIdx.x - 32; i < num_scales_b; i += kNumMathThreads - 32)
st_shared(smem_scales_b + i, __ldg(local_scales_b + i));
}
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
// Accumulation for WGMMA or CUDA promotion
float accum[WGMMA::kNumAccum], final_accum[WGMMA::kNumAccum] = {0};
// Empty barrier arrival
auto empty_barrier_arrive = [&](int s)
{
if constexpr (kNumTMAMulticast == 1)
{
lane_idx == 0 ? empty_barriers[s]->arrive() : void();
}
else
{
lane_idx < kNumTMAMulticast ? empty_barriers[s]->arrive(lane_idx) : void();
}
};
// Launch MMAs
launch_k_iterations(
[&](int k_iter, auto type)
{
constexpr bool kHasDivisibleStages = std::is_same_v<decltype(type), DivisibleK>;
constexpr int kNumInnerStages
= kHasDivisibleStages ? kNumStages : (SHAPE_K % kFullKOfAllStages) / BLOCK_K;
DG_STATIC_ASSERT(kNumInnerStages != 0, "Invalid number of inner stages");
#pragma unroll
for (int s = 0; s < kNumInnerStages; ++s)
{
// Read B scales
float scale_b_0 = ld_shared(smem_scales_b + k_iter * kNumStages + s), scale_b_1 = 1.0f;
// NOTES: even some blocks do not need to read the second row, but we still load one to align
// with other blocks
if constexpr (not kMustUseUniformedScaleB)
scale_b_1 = ld_shared(smem_scales_b + k_iter * kNumStages + s + SHAPE_K_SCALES);
// Wait TMA arrivals
full_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter) & 1);
// Read A scales
// NOTES: all shared memory read must be prior to `warpgroup_arrive` to avoid next scheduled
// block polluting the results
auto scale_a_0 = ld_shared(smem_scales_a[s] + r_0),
scale_a_1 = ld_shared(smem_scales_a[s] + r_1);
// Commit WGMMA instructions
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum; ++i)
warpgroup_fence_operand(accum[i]);
warpgroup_arrive();
#pragma unroll
for (int k = 0; k < BLOCK_K / WGMMA::K; ++k)
{
auto desc_a
= make_smem_desc(smem_a[s] + math_wg_idx * WGMMA::M * BLOCK_K + k * WGMMA::K, 1);
auto desc_b = make_smem_desc(smem_b[s] + k * WGMMA::K, 1);
WGMMA::wgmma(desc_a, desc_b, accum, k);
}
warpgroup_commit_batch();
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum; ++i)
warpgroup_fence_operand(accum[i]);
warpgroup_wait<0>();
// Notify barrier arrival
empty_barrier_arrive(s);
// Promote with scales
float scale_0_0 = scale_a_0 * scale_b_0, scale_1_0 = scale_a_1 * scale_b_0;
float scale_0_1, scale_1_1;
if constexpr (not kMustUseUniformedScaleB)
scale_0_1 = scale_a_0 * scale_b_1, scale_1_1 = scale_a_1 * scale_b_1;
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum / 4; ++i)
{
bool predicate = kMustUseUniformedScaleB or i < num_former_iters;
final_accum[i * 4 + 0] += (predicate ? scale_0_0 : scale_0_1) * accum[i * 4 + 0];
final_accum[i * 4 + 1] += (predicate ? scale_0_0 : scale_0_1) * accum[i * 4 + 1];
final_accum[i * 4 + 2] += (predicate ? scale_1_0 : scale_1_1) * accum[i * 4 + 2];
final_accum[i * 4 + 3] += (predicate ? scale_1_0 : scale_1_1) * accum[i * 4 + 3];
}
}
// Wait unaligned cases
#pragma unroll
for (uint32_t s = kNumInnerStages; s < kNumStages; ++s)
{
full_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter) & 1);
empty_barrier_arrive(s);
}
});
// Write back to shared memory using STSM
DG_STATIC_ASSERT(WGMMA::kNumAccum % 4 == 0, "Invalid STSM x2 vectorization");
#pragma unroll
for (auto i = 0; i < WGMMA::kNumAccum / 8; ++i)
{
SM90_U32x4_STSM_N<nv_bfloat162>::copy(
__float22bfloat162_rn({final_accum[i * 8 + 0], final_accum[i * 8 + 1]}),
__float22bfloat162_rn({final_accum[i * 8 + 2], final_accum[i * 8 + 3]}),
__float22bfloat162_rn({final_accum[i * 8 + 4], final_accum[i * 8 + 5]}),
__float22bfloat162_rn({final_accum[i * 8 + 6], final_accum[i * 8 + 7]}),
smem_d + (warp_idx * 16 + lane_idx % 16) * BLOCK_N + i * 16 + 8 * (lane_idx / 16));
}
if constexpr (WGMMA::kNumAccum % 8 != 0)
{
SM90_U32x2_STSM_N<nv_bfloat162>::copy(__float22bfloat162_rn({final_accum[WGMMA::kNumAccum / 8 * 8 + 0],
final_accum[WGMMA::kNumAccum / 8 * 8 + 1]}),
__float22bfloat162_rn(
{final_accum[WGMMA::kNumAccum / 8 * 8 + 2], final_accum[WGMMA::kNumAccum / 8 * 8 + 3]}),
smem_d + (warp_idx * 16 + lane_idx % 16) * BLOCK_N + WGMMA::kNumAccum / 8 * 16);
}
if constexpr (SchedulerType::gemm_type == GemmType::GroupedWithOffset)
{
auto m_global_idx = scheduler.get_global_m_idx(m_block_idx);
bool cross_boundary = (m_global_idx + BLOCK_M) > scheduler.m_boundary;
cute::tma_store_fence();
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
if (!cross_boundary)
{
// Use TMA store to write back to global memory
if (threadIdx.x == 0)
{
cute::SM90_TMA_STORE_2D::copy(&tensor_map_d, smem_d, n_block_idx * BLOCK_N, m_global_idx);
cute::tma_store_arrive();
cute::tma_store_wait<0>();
}
}
else
{
__nv_bfloat16* gmem_d_this_block = gmem_d + m_global_idx * SHAPE_N;
constexpr int NUM_WARPS
= (get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M) - 128) / 32;
write_result_to_gmem<BLOCK_M, BLOCK_N, NUM_WARPS>(gmem_d_this_block, smem_d, m_global_idx,
scheduler.m_boundary, n_block_idx * BLOCK_N, SHAPE_N, SHAPE_N);
}
}
else if constexpr (SchedulerType::gemm_type == GemmType::StridedBatched)
{
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
__nv_bfloat16* gmem_d_this_block;
auto m_global_idx = scheduler.get_global_m_idx(m_block_idx);
gmem_d_this_block = gmem_d + scheduler.curr_group_idx * problem_input.stride_d
+ (m_block_idx * BLOCK_M) * problem_input.ld_d;
constexpr int NUM_WARPS
= (get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M) - 128) / 32;
write_result_to_gmem<BLOCK_M, BLOCK_N, NUM_WARPS>(gmem_d_this_block, smem_d, m_global_idx,
scheduler.m_boundary, n_block_idx * BLOCK_N, SHAPE_N, problem_input.ld_d);
}
else
{
cute::tma_store_fence();
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
// Use TMA store to write back to global memory
if (threadIdx.x == 0)
{
cute::SM90_TMA_STORE_2D::copy(
&tensor_map_d, smem_d, n_block_idx * BLOCK_N, scheduler.get_global_m_idx(m_block_idx));
cute::tma_store_arrive();
cute::tma_store_wait<0>();
}
}
__syncwarp();
}
}
#else
if (blockIdx.x == 0 and threadIdx.x == 0)
DG_DEVICE_ASSERT(false and "This kernel only support sm_90a");
#endif
}
template <uint32_t SHAPE_M, uint32_t SHAPE_K, uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t BLOCK_K, uint32_t kNumGroups,
uint32_t kNumStages, uint32_t kNumTMAThreads, uint32_t kNumMathThreadsPerGroup, uint32_t kNumTMAMulticast,
typename SchedulerType, typename InputType>
__global__ void __launch_bounds__(get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M), 1)
fp8_gemm_offset_kernel_swapAB(__nv_bfloat16* gmem_d, float* scales_a, int64_t* offsets,
const __grid_constant__ CUtensorMap tensor_map_a, // weight (previously act)
const __grid_constant__ CUtensorMap tensor_map_b, // act (previously weight)
const __grid_constant__ CUtensorMap tensor_map_scales_b, // act scales (previously tensor_map_scales_a)
const __grid_constant__ CUtensorMap tensor_map_d)
{
#if (defined(__CUDA_ARCH__) and (__CUDA_ARCH__ >= 900)) or defined(__CLION_IDE__)
// Scaling checks
DG_STATIC_ASSERT(BLOCK_K == 128, "Only support per-128-channel FP8 scaling");
DG_STATIC_ASSERT(ceil_div(BLOCK_M, BLOCK_K) == 1, "Too much A scales in a single block");
InputType problem_input;
problem_input.problem_n_offsets = offsets;
// Types
using WGMMA = typename FP8MMASelector<BLOCK_N>::type;
using Barrier = cutlass::arch::ClusterTransactionBarrier;
// Shared memory
DG_STATIC_ASSERT(BLOCK_K % BLOCK_M == 0, "BLOCK_M should be 64 or 128 and BLOCK_K should be 128");
static constexpr uint32_t SMEM_D_SIZE = BLOCK_N * BLOCK_M * sizeof(__nv_bfloat16);
static constexpr uint32_t SMEM_A_SIZE_PER_STAGE = BLOCK_M * BLOCK_K * sizeof(__nv_fp8_e4m3);
static constexpr uint32_t SMEM_B_SIZE_PER_STAGE = BLOCK_N * BLOCK_K * sizeof(__nv_fp8_e4m3);
static constexpr uint32_t SMEM_SCALES_B_SIZE_PER_STAGE = BLOCK_N * sizeof(float); // B matrix (act) scales
static constexpr uint32_t SMEM_SCALES_B_SIZE_PER_STAGE_PADDED
= ceil_div<uint32_t>(BLOCK_N * sizeof(float), 128) * 128; // B matrix (act) scales, 128B aligned
static constexpr uint32_t SHAPE_K_SCALES = ceil_div(SHAPE_K, BLOCK_K);
static constexpr uint32_t SMEM_SCALES_A_SIZE = ceil_div<uint32_t>(SHAPE_K_SCALES * sizeof(float), sizeof(Barrier))
* sizeof(Barrier); // renamed to A (weight)
// Configs
constexpr uint32_t kFullKOfAllStages = kNumStages * BLOCK_K;
constexpr uint32_t kNumThreads = get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M);
constexpr uint32_t kNumMathThreads = kNumThreads - kNumTMAThreads;
constexpr uint32_t kNumIterations = ceil_div(SHAPE_K, kFullKOfAllStages);
const uint32_t warp_idx = __shfl_sync(0xffffffff, threadIdx.x / 32, 0);
const uint32_t lane_idx = get_lane_id();
// Prefetch TMA descriptors at very beginning
if (threadIdx.x == kNumMathThreads)
{
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_a));
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_b));
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_scales_b));
cute::prefetch_tma_descriptor(reinterpret_cast<cute::TmaDescriptor const*>(&tensor_map_d));
}
__syncwarp();
// Align to 1024 bytes for swizzle-128B
extern __shared__ __align__(1024) uint8_t smem_buffer[];
DG_STATIC_ASSERT(SMEM_D_SIZE % 1024 == 0, "Shared memory of A/B must be aligned to 1024 bytes");
// Data on shared memory
auto smem_d = reinterpret_cast<__nv_bfloat16*>(smem_buffer);
__nv_fp8_e4m3* smem_a[kNumStages]; // weight
__nv_fp8_e4m3* smem_b[kNumStages]; // act
float* smem_scales_b[kNumStages]; // act scales
float* smem_scales_a; // weight scales
// TMA Barrier for both divisible and non-divisible cases
Barrier* full_barriers[kNumStages];
Barrier* empty_barriers[kNumStages];
// Fill shared memory pointers
#pragma unroll
for (int i = 0; i < kNumStages; ++i)
{
smem_a[i] = reinterpret_cast<__nv_fp8_e4m3*>(smem_buffer + SMEM_D_SIZE + i * SMEM_A_SIZE_PER_STAGE);
smem_b[i] = reinterpret_cast<__nv_fp8_e4m3*>(
smem_buffer + SMEM_D_SIZE + kNumStages * SMEM_A_SIZE_PER_STAGE + i * SMEM_B_SIZE_PER_STAGE);
smem_scales_b[i] = reinterpret_cast<float*>(smem_buffer + SMEM_D_SIZE
+ kNumStages * (SMEM_A_SIZE_PER_STAGE + SMEM_B_SIZE_PER_STAGE) + i * SMEM_SCALES_B_SIZE_PER_STAGE_PADDED);
}
smem_scales_a = reinterpret_cast<float*>(smem_buffer + SMEM_D_SIZE
+ kNumStages * (SMEM_A_SIZE_PER_STAGE + SMEM_B_SIZE_PER_STAGE + SMEM_SCALES_B_SIZE_PER_STAGE_PADDED));
// Fill barriers
auto barrier_start_ptr = reinterpret_cast<Barrier*>(reinterpret_cast<uint8_t*>(smem_scales_a) + SMEM_SCALES_A_SIZE);
#pragma unroll
for (int i = 0; i < kNumStages; ++i)
{
full_barriers[i] = barrier_start_ptr + i;
empty_barriers[i] = barrier_start_ptr + kNumStages + i;
}
// Initialize barriers
DG_STATIC_ASSERT(kNumTMAMulticast <= 32, "Too many TMA multicast");
if (threadIdx.x == kNumMathThreads)
{
#pragma unroll
for (int i = 0; i < kNumStages; ++i)
{
full_barriers[i]->init(1);
empty_barriers[i]->init(kNumTMAMulticast * kNumMathThreads / 32);
}
// Make initialized barrier visible in async proxy
cutlass::arch::fence_view_async_shared();
(kNumTMAMulticast > 1) ? cutlass::arch::fence_barrier_init() : void();
}
// Synchronize all threads to make barrier visible in normal memory model
(kNumTMAMulticast > 1) ? cute::cluster_sync() : __syncthreads();
// For pipeline unrolling
struct DivisibleK
{
};
struct NotDivisibleK
{
};
auto launch_k_iterations = [](auto const& func)
{
if constexpr (SHAPE_K % kFullKOfAllStages == 0)
{
for (int k_iter = 0; k_iter < kNumIterations; ++k_iter)
func(k_iter, DivisibleK{});
}
else
{
for (int k_iter = 0; k_iter < kNumIterations - 1; ++k_iter)
func(k_iter, DivisibleK{});
func(kNumIterations - 1, NotDivisibleK{});
}
};
// Register reconfigurations
constexpr int kNumTMARegisters = 40;
constexpr int kNumMathRegisters = 232;
// Block scheduler
uint32_t m_block_idx, n_block_idx;
auto scheduler = SchedulerType(problem_input);
if (threadIdx.x >= kNumMathThreads)
{
// TMA warp-group for loading data
cutlass::arch::warpgroup_reg_dealloc<kNumTMARegisters>();
// NOTES: only one thread (or warp) will be used
if (threadIdx.x == kNumMathThreads)
{
// Persistently schedule over blocks
while (scheduler.get_next_block(m_block_idx, n_block_idx))
{
launch_k_iterations(
[&](int k_iter, auto type)
{
constexpr bool kHasDivisibleStages = std::is_same_v<decltype(type), DivisibleK>;
constexpr int kNumInnerStages
= kHasDivisibleStages ? kNumStages : (SHAPE_K % kFullKOfAllStages) / BLOCK_K;
DG_STATIC_ASSERT(kNumInnerStages != 0, "Invalid number of inner stages");
#pragma unroll
for (uint32_t s = 0; s < kNumInnerStages; ++s)
{
// Wait consumer release
empty_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter + 1) & 1);
// Issue TMA A (weight) now without broadcasting
auto& full_barrier = *full_barriers[s];
int k_idx = k_iter * kFullKOfAllStages + s * BLOCK_K;
tma_copy(&tensor_map_a, reinterpret_cast<uint64_t*>(&full_barrier), smem_a[s], k_idx,
scheduler.get_global_m_idx(SHAPE_M, BLOCK_M, m_block_idx, n_block_idx), 1);
// Issue TMA B (act) with broadcasting
tma_copy(&tensor_map_b, reinterpret_cast<uint64_t*>(&full_barrier),
smem_b[s], k_idx, scheduler.get_global_n_idx(n_block_idx), kNumTMAMulticast);
// Issue TMA scales_b (act scales) for B matrix
if constexpr (SchedulerType::gemm_type == GemmType::GroupedWithOffset)
{
tma_copy(&tensor_map_scales_b,
reinterpret_cast<uint64_t*>(&full_barrier), smem_scales_b[s],
scheduler.get_global_scales_b_idx(n_block_idx), k_idx / BLOCK_K, kNumTMAMulticast);
}
else
{
tma_copy(&tensor_map_scales_b,
reinterpret_cast<uint64_t*>(&full_barrier), smem_scales_b[s], n_block_idx * BLOCK_N,
scheduler.get_global_scales_b_idx(k_idx / BLOCK_K), kNumTMAMulticast);
}
full_barrier.arrive_and_expect_tx(
SMEM_A_SIZE_PER_STAGE + SMEM_B_SIZE_PER_STAGE + SMEM_SCALES_B_SIZE_PER_STAGE);
}
// Wait unaligned cases
#pragma unroll
for (uint32_t s = kNumInnerStages; s < kNumStages; ++s)
{
empty_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter + 1) & 1);
full_barriers[s]->arrive();
}
});
}
// To safely deconstruct distributed shared barriers, we need another round of empty waits
if constexpr (kNumTMAMulticast > 1)
{
#pragma unroll
for (uint32_t s = 0; s < kNumStages; ++s)
empty_barriers[s]->wait((scheduler.current_iter * kNumIterations + 1) & 1);
}
}
}
else
{
// Math warp-groups for WGMMA
cutlass::arch::warpgroup_reg_alloc<kNumMathRegisters>();
// NOTES: use `__shfl_sync` to encourage NVCC to use unified registers
auto const math_wg_idx = __shfl_sync(0xffffffff, threadIdx.x / kNumMathThreadsPerGroup, 0);
// Each thread loads consecutive 2 scales
const uint32_t scale_offset = (lane_idx % 4) * 2;
// Persistently schedule over blocks
while (scheduler.get_next_block(m_block_idx, n_block_idx))
{
// Load weight scales (scales_a) - these are associated with tensor_map_a (weight)
// Decide the number of scales A to load
DG_STATIC_ASSERT(SHAPE_M % 8 == 0, "Invalid shape M");
uint32_t num_scales_a = SHAPE_K_SCALES;
// Load A scales with math warp-groups (weight scales)
if (threadIdx.x >= 32)
{
auto num_previous_lines
= scheduler.get_global_scales_a_idx(ceil_div(SHAPE_M, BLOCK_K), 0, 0, n_block_idx);
auto local_scales_a
= scales_a + (num_previous_lines + ((m_block_idx * BLOCK_M) / BLOCK_K)) * SHAPE_K_SCALES;
#pragma unroll
for (uint32_t i = threadIdx.x - 32; i < num_scales_a; i += kNumMathThreads - 32)
st_shared(smem_scales_a + i, __ldg(local_scales_a + i));
}
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
// Accumulation for WGMMA or CUDA promotion
float accum[WGMMA::kNumAccum], final_accum[WGMMA::kNumAccum] = {0};
// Empty barrier arrival
auto empty_barrier_arrive = [&](int s)
{
if constexpr (kNumTMAMulticast == 1)
{
lane_idx == 0 ? empty_barriers[s]->arrive() : void();
}
else
{
lane_idx < kNumTMAMulticast ? empty_barriers[s]->arrive(lane_idx) : void();
}
};
// Launch MMAs
launch_k_iterations(
[&](int k_iter, auto type)
{
constexpr bool kHasDivisibleStages = std::is_same_v<decltype(type), DivisibleK>;
constexpr int kNumInnerStages
= kHasDivisibleStages ? kNumStages : (SHAPE_K % kFullKOfAllStages) / BLOCK_K;
DG_STATIC_ASSERT(kNumInnerStages != 0, "Invalid number of inner stages");
#pragma unroll
for (int s = 0; s < kNumInnerStages; ++s)
{
// Read weight scales (A scales)
float scale_a_0 = ld_shared(smem_scales_a + k_iter * kNumStages + s);
// Wait TMA arrivals
full_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter) & 1);
// NOTES: all shared memory read must be prior to `warpgroup_arrive` to avoid next scheduled
// block polluting the results
// Each thread reads consecutive two b scales, each thread needs to read WGMMA::N / 4 * 2 b
// scales
float scale_0_0[WGMMA::kNumAccum / 4], scale_0_1[WGMMA::kNumAccum / 4];
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum / 4; ++i)
{
float2 scale_b
= ld_shared(reinterpret_cast<const float2*>(smem_scales_b[s] + i * 8 + scale_offset));
scale_0_0[i] = scale_a_0 * scale_b.x;
scale_0_1[i] = scale_a_0 * scale_b.y;
}
// Commit WGMMA instructions
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum; ++i)
warpgroup_fence_operand(accum[i]);
warpgroup_arrive();
#pragma unroll
for (int k = 0; k < BLOCK_K / WGMMA::K; ++k)
{
auto desc_a
= make_smem_desc(smem_a[s] + math_wg_idx * WGMMA::M * BLOCK_K + k * WGMMA::K, 1);
auto desc_b = make_smem_desc(smem_b[s] + k * WGMMA::K, 1);
WGMMA::wgmma(desc_a, desc_b, accum, k);
}
warpgroup_commit_batch();
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum; ++i)
warpgroup_fence_operand(accum[i]);
warpgroup_wait<0>();
// Notify barrier arrival
empty_barrier_arrive(s);
// Promote with scales
#pragma unroll
for (int i = 0; i < WGMMA::kNumAccum / 4; ++i)
{
final_accum[i * 4 + 0] += scale_0_0[i] * accum[i * 4 + 0];
final_accum[i * 4 + 1] += scale_0_1[i] * accum[i * 4 + 1];
final_accum[i * 4 + 2] += scale_0_0[i] * accum[i * 4 + 2];
final_accum[i * 4 + 3] += scale_0_1[i] * accum[i * 4 + 3];
}
}
// Wait unaligned cases
#pragma unroll
for (uint32_t s = kNumInnerStages; s < kNumStages; ++s)
{
full_barriers[s]->wait((scheduler.current_iter * kNumIterations + k_iter) & 1);
empty_barrier_arrive(s);
}
});
// Write back to shared memory using STSM
DG_STATIC_ASSERT(WGMMA::kNumAccum % 4 == 0, "Invalid STSM x2 vectorization");
int tid = 0;
if (lane_idx < 8)
{
tid = lane_idx * BLOCK_M;
}
else if (lane_idx < 16)
{
tid = (lane_idx - 8) * BLOCK_M + 8;
}
else if (lane_idx < 24)
{
tid = (lane_idx - 8) * BLOCK_M;
}
else
{
tid = (lane_idx - 16) * BLOCK_M + 8;
}
#pragma unroll
for (auto i = 0; i < WGMMA::kNumAccum / 8; ++i)
{
SM90_U32x4_STSM_T<nv_bfloat162>::copy(
__float22bfloat162_rn({final_accum[i * 8 + 0], final_accum[i * 8 + 1]}),
__float22bfloat162_rn({final_accum[i * 8 + 2], final_accum[i * 8 + 3]}),
__float22bfloat162_rn({final_accum[i * 8 + 4], final_accum[i * 8 + 5]}),
__float22bfloat162_rn({final_accum[i * 8 + 6], final_accum[i * 8 + 7]}),
smem_d + warp_idx * 16 + i * 16 * BLOCK_M + tid);
}
if constexpr (WGMMA::kNumAccum % 8 != 0)
{
SM90_U32x2_STSM_T<nv_bfloat162>::copy(__float22bfloat162_rn({final_accum[WGMMA::kNumAccum / 8 * 8 + 0],
final_accum[WGMMA::kNumAccum / 8 * 8 + 1]}),
__float22bfloat162_rn(
{final_accum[WGMMA::kNumAccum / 8 * 8 + 2], final_accum[WGMMA::kNumAccum / 8 * 8 + 3]}),
smem_d + warp_idx * 16 + WGMMA::kNumAccum / 8 * 16 * BLOCK_M + tid);
}
if constexpr (SchedulerType::gemm_type == GemmType::GroupedWithOffset)
{
auto n_global_idx = scheduler.get_global_n_idx(n_block_idx);
bool cross_boundary = (n_global_idx + BLOCK_N) > scheduler.n_boundary;
cute::tma_store_fence();
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
if (!cross_boundary)
{
// Use TMA store to write back to global memory
if (threadIdx.x == 0)
{
cute::SM90_TMA_STORE_2D::copy(&tensor_map_d, smem_d, m_block_idx * BLOCK_M, n_global_idx);
cute::tma_store_arrive();
cute::tma_store_wait<0>();
}
}
else
{
__nv_bfloat16* gmem_d_this_block = gmem_d + n_global_idx * SHAPE_M;
constexpr int NUM_WARPS
= (get_num_threads_per_sm<kNumTMAThreads, kNumMathThreadsPerGroup>(BLOCK_M) - 128) / 32;
write_result_to_gmem<BLOCK_N, BLOCK_M, NUM_WARPS>(gmem_d_this_block, smem_d, n_global_idx,
scheduler.n_boundary, m_block_idx * BLOCK_M, SHAPE_M, SHAPE_M);
}
}
else
{
cute::tma_store_fence();
cutlass::arch::NamedBarrier(kNumMathThreads).sync();
// Use TMA store to write back to global memory
if (threadIdx.x == 0)
{
cute::SM90_TMA_STORE_2D::copy(
&tensor_map_d, smem_d, m_block_idx * BLOCK_M, scheduler.get_global_n_idx(n_block_idx));
cute::tma_store_arrive();
cute::tma_store_wait<0>();
}
}
__syncwarp();
}
}
#else
if (blockIdx.x == 0 and threadIdx.x == 0)
DG_DEVICE_ASSERT(false and "This kernel only support sm_90a");
#endif
}
}; // namespace deep_gemm
#pragma clang diagnostic pop
#pragma clang diagnostic pop

View File

@ -32,6 +32,30 @@ struct SM90_U32x4_STSM_N {
}
};
template <typename dtype_t>
struct SM90_U32x2_STSM_T
{
__device__ __forceinline__ static void copy(dtype_t src_0, dtype_t src_1, void* smem_dst)
{
const uint32_t src[2] = {*reinterpret_cast<uint32_t*>(&src_0), *reinterpret_cast<uint32_t*>(&src_1)};
asm volatile("stmatrix.sync.aligned.x2.m8n8.shared.b16.trans [%0], {%1, %2};\n" ::"l"(smem_dst), "r"(src[0]),
"r"(src[1]));
}
};
template <typename dtype_t>
struct SM90_U32x4_STSM_T
{
__device__ __forceinline__ static void copy(
dtype_t src_0, dtype_t src_1, dtype_t src_2, dtype_t src_3, void* smem_dst)
{
const uint32_t src[4] = {*reinterpret_cast<uint32_t*>(&src_0), *reinterpret_cast<uint32_t*>(&src_1),
*reinterpret_cast<uint32_t*>(&src_2), *reinterpret_cast<uint32_t*>(&src_3)};
asm volatile("stmatrix.sync.aligned.x4.m8n8.shared.b16.trans [%0], {%1, %2, %3, %4};\n" ::"l"(smem_dst),
"r"(src[0]), "r"(src[1]), "r"(src[2]), "r"(src[3]));
}
};
__forceinline__ __device__ void warpgroup_arrive() {
asm volatile("wgmma.fence.sync.aligned;\n" ::: "memory");
}

View File

@ -7,7 +7,8 @@ namespace deep_gemm {
enum class GemmType {
Normal,
GroupedContiguous,
GroupedMasked
GroupedMasked,
GroupedWithOffset
};
#pragma clang diagnostic push
@ -158,6 +159,278 @@ struct Scheduler {
}
};
template <uint32_t kNumTMAMulticast, uint32_t kNumNBlocks, uint32_t kNumNBlocksPerGroup>
__device__ __forceinline__ void offset_get_swizzled_block_idx(
const uint32_t num_m_blocks, int block_idx, uint32_t& m_block_idx, uint32_t& n_block_idx)
{
DG_STATIC_ASSERT(kNumNBlocksPerGroup % kNumTMAMulticast == 0, "Invalid group size");
// Swizzle for better L2 usages
auto num_blocks_per_group = num_m_blocks * kNumNBlocksPerGroup;
auto group_idx = block_idx / num_blocks_per_group;
auto first_n_block_idx = group_idx * kNumNBlocksPerGroup;
auto num_n_blocks_in_group = min(kNumNBlocksPerGroup, kNumNBlocks - first_n_block_idx);
auto in_group_idx = block_idx % num_blocks_per_group;
m_block_idx = in_group_idx / num_n_blocks_in_group;
n_block_idx = first_n_block_idx + in_group_idx % num_n_blocks_in_group;
}
struct GroupedWithOffsetSchedulerInput
{
uint32_t shape_m;
int64_t* problem_m_offsets;
};
struct GroupedWithOffsetSchedulerInputSwapAB
{
uint32_t shape_m;
int64_t* problem_n_offsets;
};
struct StridedBatchedSchedulerInput
{
uint32_t shape_m;
uint64_t ld_a;
uint64_t stride_a;
uint64_t ld_b;
uint64_t stride_b;
uint64_t ld_d;
uint64_t stride_d;
};
struct StridedBatchedSchedulerInputSwapAB
{
uint32_t shape_n;
uint64_t ld_a;
uint64_t stride_a;
uint64_t ld_b;
uint64_t stride_b;
uint64_t ld_d;
uint64_t stride_d;
};
// Need to keep the same as the one in tests/unittest/_torch/thop/deep_gemm_tests.py
template <typename T_offset, typename T_index>
__host__ __device__ __forceinline__ T_offset compute_padded_offset(T_offset offset, T_index problem_idx)
{
// This formulation ensures that padded_offset[i + 1] - padded_offset[i] >= offset[i + 1] - offset[i].
constexpr T_offset alignment = 32;
return (offset + problem_idx * (alignment - 1)) / alignment * alignment;
}
template <uint32_t SHAPE_N, uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t kNumGroups, uint32_t kNumTMAMulticast,
uint32_t kNumNBlocks = ceil_div(SHAPE_N, BLOCK_N), uint32_t kNumNBlocksPerGroup = 16>
struct GroupedWithOffsetScheduler
{
static constexpr GemmType gemm_type = GemmType::GroupedWithOffset;
int current_iter = -1;
uint32_t curr_group_idx;
uint32_t curr_cumsum;
int64_t m_offset;
int64_t m_padded_4_offset;
int64_t m_boundary;
int64_t* problem_m_offsets;
using Input = GroupedWithOffsetSchedulerInput;
Input input;
GroupedWithOffsetScheduler() {}
__device__ __forceinline__ GroupedWithOffsetScheduler(Input& input)
{
this->problem_m_offsets = input.problem_m_offsets;
curr_group_idx = 0;
curr_cumsum = 0;
}
__device__ __forceinline__ uint32_t get_global_m_idx(uint32_t const& block_idx)
{
return m_offset + block_idx * BLOCK_M;
}
__device__ __forceinline__ uint32_t get_global_n_idx(
uint32_t const shape_dim, uint32_t const block_size, uint32_t const& block_idx, uint32_t const& m_block_idx = 0)
{
return curr_group_idx * shape_dim + block_idx * block_size;
}
__device__ __forceinline__ uint32_t get_global_scales_a_idx(uint32_t const& block_idx)
{
return m_padded_4_offset + block_idx * BLOCK_M;
}
__device__ __forceinline__ uint32_t get_global_scales_b_idx(
uint32_t const shape_dim, uint32_t const block_size, uint32_t const& block_idx, uint32_t const& m_block_idx = 0)
{
return curr_group_idx * shape_dim + block_idx * block_size;
}
__device__ __forceinline__ bool get_next_block(uint32_t& m_block_idx, uint32_t& n_block_idx)
{
++current_iter;
auto const next_block_idx = current_iter * gridDim.x + blockIdx.x;
uint32_t num_m_blocks;
while (true)
{
// End of the task
if (curr_group_idx == kNumGroups)
return false;
m_offset = __ldg(problem_m_offsets + curr_group_idx);
m_boundary = __ldg(problem_m_offsets + curr_group_idx + 1);
m_padded_4_offset = compute_padded_offset(m_offset, curr_group_idx);
auto m = m_boundary - m_offset;
// Within current group
num_m_blocks = ceil_div(m, static_cast<int64_t>(BLOCK_M));
auto current_m_block_cumsum = curr_cumsum + num_m_blocks;
if (next_block_idx < current_m_block_cumsum * kNumNBlocks)
break;
// Move to check the next group
curr_group_idx++;
curr_cumsum = current_m_block_cumsum;
}
offset_get_swizzled_block_idx<kNumTMAMulticast, kNumNBlocks, kNumNBlocksPerGroup>(
num_m_blocks, next_block_idx - curr_cumsum * kNumNBlocks, m_block_idx, n_block_idx);
return true;
}
};
template <uint32_t SHAPE_M, uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t kNumGroups, uint32_t kNumTMAMulticast,
uint32_t kNumMBlocks = ceil_div(SHAPE_M, BLOCK_M), uint32_t kNumMBlocksPerGroup = 16>
struct GroupedWithOffsetSchedulerSwapAB
{
static constexpr GemmType gemm_type = GemmType::GroupedWithOffset;
int current_iter = -1;
uint32_t curr_group_idx;
uint32_t curr_cumsum;
int64_t n_offset;
int64_t n_padded_4_offset;
int64_t n_boundary;
int64_t* problem_n_offsets;
using Input = GroupedWithOffsetSchedulerInputSwapAB;
Input input;
GroupedWithOffsetSchedulerSwapAB() {}
__device__ __forceinline__ GroupedWithOffsetSchedulerSwapAB(Input& input)
{
this->problem_n_offsets = input.problem_n_offsets;
curr_group_idx = 0;
curr_cumsum = 0;
}
// weight
__device__ __forceinline__ uint32_t get_global_m_idx(
const uint32_t shape_dim, const uint32_t block_size, uint32_t const& block_idx, uint32_t const& n_block_idx = 0)
{
return curr_group_idx * shape_dim + block_idx * block_size;
}
// act
__device__ __forceinline__ uint32_t get_global_n_idx(uint32_t const& block_idx)
{
return n_offset + block_idx * BLOCK_N;
}
// act scales
__device__ __forceinline__ uint32_t get_global_scales_b_idx(uint32_t const& block_idx)
{
return n_padded_4_offset + block_idx * BLOCK_N;
}
// weight scales
__device__ __forceinline__ uint32_t get_global_scales_a_idx(
const uint32_t shape_dim, const uint32_t block_size, uint32_t const& block_idx, uint32_t const& n_block_idx = 0)
{
return curr_group_idx * shape_dim + block_idx * block_size;
}
__device__ __forceinline__ bool get_next_block(uint32_t& m_block_idx, uint32_t& n_block_idx)
{
++current_iter;
auto const next_block_idx = current_iter * gridDim.x + blockIdx.x;
uint32_t num_n_blocks;
while (true)
{
// End of the task
if (curr_group_idx == kNumGroups)
return false;
n_offset = __ldg(problem_n_offsets + curr_group_idx);
n_boundary = __ldg(problem_n_offsets + curr_group_idx + 1);
n_padded_4_offset = compute_padded_offset(n_offset, curr_group_idx);
auto n = n_boundary - n_offset;
// Within current group
num_n_blocks = ceil_div(n, static_cast<int64_t>(BLOCK_N));
auto current_n_block_cumsum = curr_cumsum + num_n_blocks;
if (next_block_idx < current_n_block_cumsum * kNumMBlocks)
break;
// Move to check the next group
curr_group_idx++;
curr_cumsum = current_n_block_cumsum;
}
offset_get_swizzled_block_idx<kNumTMAMulticast, kNumMBlocks, kNumMBlocksPerGroup>(
num_n_blocks, next_block_idx - curr_cumsum * kNumMBlocks, n_block_idx, m_block_idx);
return true;
}
};
template <GemmType GT, uint32_t SHAPE_N, uint32_t SHAPE_K, uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t BLOCK_K,
uint32_t kNumGroups, uint32_t kNumTMAMulticast, uint32_t kNumNBlocks = ceil_div(SHAPE_N, BLOCK_N),
uint32_t kNumNBlocksPerGroup = 16>
struct SchedulerSelector
{
static constexpr auto select_type()
{
if constexpr (GT == GemmType::Normal)
return NormalScheduler<SHAPE_N, BLOCK_M, BLOCK_N, kNumGroups, kNumTMAMulticast, kNumNBlocks,
kNumNBlocksPerGroup>();
if constexpr (GT == GemmType::GroupedContiguous)
return GroupedContiguousScheduler<SHAPE_N, BLOCK_M, BLOCK_N, kNumGroups, kNumTMAMulticast, kNumNBlocks,
kNumNBlocksPerGroup>();
if constexpr (GT == GemmType::GroupedMasked)
return GroupedMaskedScheduler<SHAPE_N, SHAPE_K, BLOCK_M, BLOCK_N, BLOCK_K, kNumGroups, kNumTMAMulticast,
kNumNBlocks, kNumNBlocksPerGroup>();
if constexpr (GT == GemmType::GroupedWithOffset)
return GroupedWithOffsetScheduler<SHAPE_N, BLOCK_M, BLOCK_N, kNumGroups, kNumTMAMulticast, kNumNBlocks,
kNumNBlocksPerGroup>();
if constexpr (GT == GemmType::StridedBatched)
return StridedBatchedScheduler<SHAPE_N, SHAPE_K, BLOCK_M, BLOCK_N, BLOCK_K, kNumGroups, kNumTMAMulticast,
kNumNBlocks, kNumNBlocksPerGroup>();
}
using type = decltype(select_type());
};
template <GemmType GT, uint32_t SHAPE_M, uint32_t SHAPE_K, uint32_t BLOCK_M, uint32_t BLOCK_N, uint32_t BLOCK_K,
uint32_t kNumGroups, uint32_t kNumTMAMulticast, uint32_t kNumMBlocks = ceil_div(SHAPE_M, BLOCK_M),
uint32_t kNumMBlocksPerGroup = 16>
struct SchedulerSelectorSwapAB
{
static constexpr auto select_type()
{
static_assert(GT == GemmType::GroupedWithOffset || GT == GemmType::Normal,
"Only GroupedWithOffset and Normal are supported for SwapAB");
if constexpr (GT == GemmType::Normal)
return NormalSchedulerSwapAB<SHAPE_M, BLOCK_M, BLOCK_N, kNumGroups, kNumTMAMulticast, kNumMBlocks,
kNumMBlocksPerGroup>();
if constexpr (GT == GemmType::GroupedWithOffset)
return GroupedWithOffsetSchedulerSwapAB<SHAPE_M, BLOCK_M, BLOCK_N, kNumGroups, kNumTMAMulticast,
kNumMBlocks, kNumMBlocksPerGroup>();
}
using type = decltype(select_type());
};
#pragma clang diagnostic pop
} // namespace deep_gemm

View File

@ -1,7 +1,8 @@
from .gemm import gemm_fp8_fp8_bf16_nt
from .m_grouped_gemm import (
m_grouped_gemm_fp8_fp8_bf16_nt_contiguous,
m_grouped_gemm_fp8_fp8_bf16_nt_masked
m_grouped_gemm_fp8_fp8_bf16_nt_masked,
m_grouped_gemm_fp8_fp8_bf16_nt_offset
)
from .wgrad_gemm import (
wgrad_gemm_fp8_fp8_fp32_nt,

View File

@ -34,42 +34,71 @@ def get_block_n_padding_for_smem_d(block_n: int) -> int:
def get_smem_config(num_stages: int, k: int, block_m: int, block_n: int, block_k: int = 128,
is_fp32_out: bool = False, is_wgrad: bool = False) -> Tuple[int, int, int]:
is_fp32_out: bool = False, is_wgrad: bool = False, is_swap_ab: bool = False) -> Tuple[int, int, int]:
assert block_k == 128
# Try swizzle first, as it does not waste shared memory
swizzle_mode = get_swizzle_mode(block_n)
block_n_padding = get_block_n_padding_for_smem_d(
block_n) if swizzle_mode == 0 else 0
# NOTES: `scales_b` in a total manner or per-stage manner
smem_d = block_m * (block_n + block_n_padding) * (4 if is_fp32_out else 2)
smem_a_per_stage = block_m * block_k
smem_scales_a_per_stage = block_m * 4
smem_b_per_stage = block_n * block_k
smem_scales_b_per_stage = ceil_div(block_n * 4, block_k) * block_k if is_wgrad else 0
smem_scales_b = ceil_div(k, block_k) * 4 if not is_wgrad else 0
smem_barrier = num_stages * 8 * 2
if not is_swap_ab:
# Try swizzle first, as it does not waste shared memory
swizzle_mode = get_swizzle_mode(block_n)
block_n_padding = get_block_n_padding_for_smem_d(
block_n) if swizzle_mode == 0 else 0
smem_size = 0
smem_size += smem_d
smem_size += num_stages * smem_a_per_stage
smem_size += num_stages * smem_scales_a_per_stage
smem_size += num_stages * smem_b_per_stage
smem_size += num_stages * smem_scales_b_per_stage
smem_size += ceil_div(smem_scales_b * (1 if block_k % block_n == 0 else 2), 8) * 8
smem_size += smem_barrier
# NOTES: `scales_b` in a total manner or per-stage manner
smem_d = block_m * (block_n + block_n_padding) * (4 if is_fp32_out else 2)
smem_a_per_stage = block_m * block_k
smem_scales_a_per_stage = block_m * 4
smem_b_per_stage = block_n * block_k
smem_scales_b_per_stage = ceil_div(block_n * 4, block_k) * block_k if is_wgrad else 0
smem_scales_b = ceil_div(k, block_k) * 4 if not is_wgrad else 0
smem_barrier = num_stages * 8 * 2
# Swizzle and padding are not compatible
assert int(swizzle_mode > 0) + int(block_n_padding > 0) <= 1
smem_size = 0
smem_size += smem_d
smem_size += num_stages * smem_a_per_stage
smem_size += num_stages * smem_scales_a_per_stage
smem_size += num_stages * smem_b_per_stage
smem_size += num_stages * smem_scales_b_per_stage
smem_size += ceil_div(smem_scales_b * (1 if block_k % block_n == 0 else 2), 8) * 8
smem_size += smem_barrier
return smem_size, swizzle_mode, block_n_padding
# Swizzle and padding are not compatible
assert int(swizzle_mode > 0) + int(block_n_padding > 0) <= 1
return smem_size, swizzle_mode, block_n_padding
else:
# Try swizzle first, as it does not waste shared memory
swizzle_mode = get_swizzle_mode(block_n)
block_n_padding = get_block_n_padding_for_smem_d(
block_n) if swizzle_mode == 0 else 0
# NOTES: `scales_b` in a total manner or per-stage manner
smem_d = block_m * (block_n + block_n_padding) * (4 if is_fp32_out else 2)
smem_a_per_stage = block_m * block_k
smem_scales_a_per_stage = ceil_div(k, block_k) * 4; # weight scales
smem_b_per_stage = block_n * block_k
smem_scales_b_per_stage = 0 # swap_ab not support wgrad
smem_scales_b = ceil_div(block_n * 4, 128) * 128 # swap_ab not support wgrad
smem_barrier = num_stages * 8 * 2
smem_size = 0
smem_size += smem_d
smem_size += num_stages * smem_a_per_stage
smem_size += num_stages * smem_scales_b
smem_size += num_stages * smem_b_per_stage
smem_size += num_stages * smem_scales_b_per_stage
smem_size += ceil_div(smem_scales_a_per_stage * (1 if block_k % block_n == 0 else 2), 8) * 8
smem_size += smem_barrier
# Swizzle and padding are not compatible
assert int(swizzle_mode > 0) + int(block_n_padding > 0) <= 1
return smem_size, swizzle_mode, block_n_padding
@lru_cache(maxsize=None)
def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
is_grouped_contiguous: bool = False, is_grouped_masked: bool = False,
is_fp32_out: bool = False, is_wgrad: bool = False) -> \
is_fp32_out: bool = False, is_wgrad: bool = False, is_swap_ab: bool = False) -> \
Tuple[int, int, int, int, Tuple[int, bool], Tuple[int, int, int]]:
if not is_grouped_contiguous:
block_ms = (64, 128, ) + ((256, ) if not is_fp32_out else ())
@ -119,7 +148,7 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
# Unrolling both stages and `num_former_iters` will cause large code size
stage_candidates = tuple(filter(lambda s: s <= max(k // 128, 1), (4, 3, 2, 1)))
for num_stages in stage_candidates:
best_smem_config = get_smem_config(num_stages, k, best_block_m, best_block_n, is_fp32_out=is_fp32_out, is_wgrad=is_wgrad)
best_smem_config = get_smem_config(num_stages, k, best_block_m, best_block_n, is_fp32_out=is_fp32_out, is_wgrad=is_wgrad, is_swap_ab = is_swap_ab)
if best_smem_config[0] <= sm90_capacity:
best_num_stages = num_stages
break
@ -131,21 +160,39 @@ def get_best_configs(m: int, n: int, k: int, num_groups: int, num_sms: int,
# Try to multicast on the larger block side first
# NOTES: currently, grouped masked GEMM only supports multicast on A and requires the number of blocks in the N-direction to be even
is_multicast_legal = {
'A': is_tma_multicast_legal(n, best_block_n, 2, num_sms, is_grouped_masked),
'B': is_tma_multicast_legal(m, best_block_m, 2, num_sms) and not is_grouped_masked,
}
for i in ('A', 'B') if best_block_m > best_block_n else ('B', 'A'):
if m >= 512 and is_multicast_legal[i]:
best_tma_multicast_config = (2, i == 'A')
break
# Recompute the minimal number of SMs required
# NOTES: less L2 cache usage and less GPU frequency drop
num_waves = get_num_waves(best_block_m, best_block_n)
num_min_sms = ceil_div(ceil_div(m, best_block_m) * ceil_div(n, best_block_n) * num_groups, num_waves)
num_min_sms = ceil_div(num_min_sms, best_tma_multicast_config[0]) * best_tma_multicast_config[0]
assert num_min_sms <= num_sms
if not is_swap_ab:
is_multicast_legal = {
'A': is_tma_multicast_legal(n, best_block_n, 2, num_sms, is_grouped_masked),
'B': is_tma_multicast_legal(m, best_block_m, 2, num_sms) and not is_grouped_masked,
}
for i in ('A', 'B') if best_block_m > best_block_n else ('B', 'A'):
if m >= 512 and is_multicast_legal[i]:
best_tma_multicast_config = (2, i == 'A')
break
# Recompute the minimal number of SMs required
# NOTES: less L2 cache usage and less GPU frequency drop
num_waves = get_num_waves(best_block_m, best_block_n)
num_min_sms = ceil_div(ceil_div(m, best_block_m) * ceil_div(n, best_block_n) * num_groups, num_waves)
num_min_sms = ceil_div(num_min_sms, best_tma_multicast_config[0]) * best_tma_multicast_config[0]
assert num_min_sms <= num_sms
else:
is_multicast_legal = {
'A': is_tma_multicast_legal(n, best_block_m, 2, num_sms),
'B': is_tma_multicast_legal(m, best_block_n, 2, num_sms),
}
for i in ('A', 'B') if best_block_m > best_block_n else ('B', 'A'):
if n >= 512 and is_multicast_legal[i]:
best_tma_multicast_config = (2, i == 'B')
break
# Recompute the minimal number of SMs required
# NOTES: less L2 cache usage and less GPU frequency drop
num_waves = get_num_waves(best_block_n, best_block_m)
num_min_sms = ceil_div(ceil_div(n, best_block_m) * ceil_div(m, best_block_n) * num_groups, num_waves)
num_min_sms = ceil_div(num_min_sms, best_tma_multicast_config[0]) * best_tma_multicast_config[0]
assert num_min_sms <= num_sms
return num_min_sms, best_block_m, best_block_n, best_num_stages, best_tma_multicast_config, best_smem_config

View File

@ -4,10 +4,12 @@ from typing import Tuple
from ..jit import build
from .gemm import get_best_configs
from .runtime import (
FP8GemmRuntime, GemmType,
FP8GemmRuntime, FP8GemmOffsetRuntime, GemmType,
make_2d_tma_a_desc, make_2d_tma_b_desc,
make_2d_tma_d_desc, make_2d_tma_scales_desc)
from .utils import ceil_div, get_col_major_tma_aligned_tensor, get_num_sms
make_2d_tma_d_desc, make_2d_tma_scales_desc,
make_2d_tma_scales_a_offset_desc,
make_2d_tma_a_offset_desc_swapAB, make_2d_tma_b_offset_desc_swapAB, make_2d_tma_d_offset_desc_swapAB, make_2d_tma_scales_b_offset_desc_swapAB)
from .utils import ceil_div, get_col_major_tma_aligned_tensor, get_num_sms, compute_padded_offset
def m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(lhs: Tuple[torch.Tensor, torch.Tensor],
@ -203,3 +205,163 @@ def m_grouped_gemm_fp8_fp8_bf16_nt_masked(lhs: Tuple[torch.Tensor, torch.Tensor]
code = FP8GemmRuntime.generate(kwargs)
runtime = build('m_grouped_gemm_fp8_fp8_bf16_nt', code, FP8GemmRuntime, kwargs)
runtime(**kwargs)
def m_grouped_gemm_fp8_fp8_bf16_nt_offset(lhs: Tuple[torch.Tensor, torch.Tensor],
rhs: Tuple[torch.Tensor, torch.Tensor],
offsets: torch.Tensor,
out: torch.Tensor, expected_m: int) -> None:
"""
GroupedWithOffset from TensorRT-LLM
"""
lhs, lhs_scales = lhs
rhs, rhs_scales = rhs
m, k = lhs.shape
num_groups, n, k_ = rhs.shape
m_, n_ = out.shape
print("expected_m: ",expected_m)
print("A shape: ",lhs.shape)
print("A scale shape: ",lhs_scales.shape)
print("B shape: ",rhs.shape)
print("B scale shape: ",rhs_scales.shape)
print("out shape: ",out.shape)
# Type and shape checks
assert m == m_ and n == n_ and k == k_
max_shape_m_4_align = ceil_div(m, 4) * 4 # align 4
max_shape_m_32_align_padded = compute_padded_offset(m, num_groups)
assert expected_m > 0 and max_shape_m_4_align > 0 and n > 0 and k > 0 and num_groups > 0
# if compute_padded_offset ?
#assert lhs_scales.shape == (num_groups, m, ceil_div(k, 128))
assert rhs_scales.shape == (num_groups, ceil_div(n, 128), ceil_div(k, 128))
assert lhs.dtype == torch.float8_e4m3fn and lhs_scales.dtype == torch.float32
assert rhs.dtype == torch.float8_e4m3fn and rhs_scales.dtype == torch.float32
assert out.dtype == torch.bfloat16
assert lhs.is_contiguous() and rhs.is_contiguous()
assert out.is_contiguous()
# LHS scales must be transposed for TMA load, but not for RHS scales
lhs_scales = get_col_major_tma_aligned_tensor(lhs_scales)
assert rhs_scales.is_contiguous()
# Auto-tuning with compilation
num_sms = get_num_sms()
if num_sms==78:
m_per_expert_threshold = 64 # H20
else:
m_per_expert_threshold = 32 # H100
if expected_m>= m_per_expert_threshold:
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
expected_m, n, k, num_groups, num_sms, is_grouped_contiguous = True, is_swap_ab=False)
# Extra checks for TMA store
if num_groups > 1 and m > block_m:
assert m % block_m == 0, f'For GroupedWithOffset grouped GEMM, shape M should be multiple of the block M (current block M: {block_m})'
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_desc(GemmType.GroupedWithOffset, lhs, m, k, k, block_m, block_k, num_groups)
tensor_map_b = make_2d_tma_b_desc(GemmType.GroupedWithOffset, rhs, n, k, k, block_n, block_k, num_groups)
tensor_map_d = make_2d_tma_d_desc(GemmType.GroupedWithOffset, out, m, n, n, block_m, block_n, num_groups, 0) # none swizzle
tensor_map_scales_a = make_2d_tma_scales_a_offset_desc(GemmType.GroupedWithOffset, lhs_scales, max_shape_m_32_align_padded, k, block_m, block_k) # none swizzle
kwargs = {
# Templated arguments
'KERNEL_NAME': 'fp8_gemm_offset_kernel',
'SCHEDULER_TYPE': 'SchedulerSelector',
'INPUT_TYPE': 'GroupedWithOffsetSchedulerInput',
'PROBLEM_OFFSETS': offsets,
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m, 'N': n, 'K': k,
'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k,
'NUM_GROUPS': num_groups,
'NUM_STAGES': num_stages,
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1],
'GEMM_TYPE': GemmType.GroupedWithOffset,
# Runtime arguments
'SCALES': rhs_scales,
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES': tensor_map_scales_a,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
'DEVICE_INDEX': out.device.index,
'OUT': out
}
else:
num_sms, block_m, block_n, num_stages, tma_multicast_config, smem_config = get_best_configs(
n, expected_m, k, num_groups, num_sms, is_grouped_contiguous = True, is_swap_ab=True)
# Extra checks for TMA store
if num_groups > 1 and n > block_m:
assert n % block_m == 0, f'For GroupedWithOffset grouped GEMM, shape M should be multiple of the block M (current block M: {block_m})'
print("is_swap_ab=True =========")
print("num_sms: ",num_sms)
print("block_m: ",block_m)
print("block_n: ",block_n)
print("num_stages: ",num_stages)
print("tma_multicast_config: ",tma_multicast_config)
print("smem_config: ",smem_config)
block_k = 128
num_tma_threads = 128
num_math_threads_per_group = 128
tensor_map_a = make_2d_tma_a_offset_desc_swapAB(GemmType.GroupedWithOffset, rhs, n, k, k, block_m, block_k, num_groups)
tensor_map_b = make_2d_tma_b_offset_desc_swapAB(GemmType.GroupedWithOffset, lhs, m, k, k, block_n, block_k, num_groups)
tensor_map_d = make_2d_tma_d_offset_desc_swapAB(GemmType.GroupedWithOffset, out, n, m, m, block_m, block_n, num_groups, 0) # no swizzle
tensor_map_scales_b = make_2d_tma_scales_b_offset_desc_swapAB(GemmType.GroupedWithOffset, lhs_scales, max_shape_m_32_align_padded, k, block_n, block_k) # no swizzle
kwargs = {
# Templated arguments
'KERNEL_NAME': 'fp8_gemm_offset_kernel_swapAB',
'SCHEDULER_TYPE': 'SchedulerSelectorSwapAB',
'INPUT_TYPE': 'GroupedWithOffsetSchedulerInputSwapAB',
'PROBLEM_OFFSETS': offsets,
'NUM_TMA_THREADS': num_tma_threads,
'NUM_MATH_THREADS_PER_GROUP': num_math_threads_per_group,
'M': m, 'N': n, 'K': k,
'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k,
'NUM_GROUPS': num_groups,
'NUM_STAGES': num_stages,
'NUM_TMA_MULTICAST': tma_multicast_config[0],
'IS_TMA_MULTICAST_ON_A': tma_multicast_config[1],
'GEMM_TYPE': GemmType.GroupedWithOffset,
# Runtime arguments
'SCALES': rhs_scales,
'NUM_SMS': num_sms,
'SMEM_SIZE': smem_config[0],
'TENSOR_MAP_A': tensor_map_a,
'TENSOR_MAP_B': tensor_map_b,
'TENSOR_MAP_SCALES': tensor_map_scales_b,
'TENSOR_MAP_D': tensor_map_d,
'STREAM': torch.cuda.current_stream().cuda_stream,
'DEVICE_INDEX': out.device.index,
'OUT': out
}
# Generate, build and run the kernel
code = FP8GemmOffsetRuntime.generate(kwargs)
runtime = build('m_grouped_gemm_fp8_fp8_bf16_nt_offset', code, FP8GemmOffsetRuntime, kwargs)
runtime(**kwargs)

View File

@ -5,7 +5,7 @@ import torch
import cuda.bindings.driver as cbd
from typing import Any, Dict, Tuple
from .utils import get_tma_aligned_size
from .utils import get_tma_aligned_size, ceil_div
from ..jit.runtime import Runtime
@ -13,12 +13,15 @@ class GemmType(enum.Enum):
Normal = 0
GroupedContiguous = 1
GroupedMasked = 2
GroupedWithOffset = 3
def __str__(self) -> str:
return {
0: 'Normal',
1: 'GroupedContiguous',
2: 'GroupedMasked',
3: 'GroupedWithOffset',
}[self.value]
@ -133,6 +136,58 @@ def make_2d_tma_scales_desc(gemm_type: GemmType, t: torch.Tensor,
cbd.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE)
def make_2d_tma_scales_a_offset_desc(gemm_type: GemmType, t: torch.Tensor,
max_m_padded_total: int, shape_k: int,
block_m: int, block_k: int,
global_stride_in_bytes: int = 0) -> cbd.CUtensorMap:
return make_2d_tma_desc(t,
max_m_padded_total, ceil_div(shape_k, block_k), max_m_padded_total,
block_m, 1,
cbd.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE)
def make_2d_tma_a_offset_desc_swapAB(gemm_type: GemmType, t: torch.Tensor,
shape_m: int, shape_k: int, m_stride: int,
block_m: int, block_k: int,
num_groups: int) -> cbd.CUtensorMap:
return make_2d_tma_desc(t,
shape_k, shape_m * (num_groups if gemm_type != GemmType.Normal else 1), m_stride,
block_k, block_m)
def make_2d_tma_b_offset_desc_swapAB(gemm_type: GemmType, t: torch.Tensor,
shape_n: int, shape_k: int, n_stride: int,
block_n: int, block_k: int,
num_groups: int) -> cbd.CUtensorMap:
return make_2d_tma_desc(t,
shape_k, shape_n * (num_groups if gemm_type == GemmType.GroupedMasked else 1), n_stride,
block_k, block_n)
def make_2d_tma_d_offset_desc_swapAB(gemm_type: GemmType, t: torch.Tensor,
shape_m: int, shape_n: int, m_stride: int,
block_m: int, block_n: int,
num_groups: int,
swizzle_mode: int) -> cbd.CUtensorMap:
# Swizzling requires the inner box dim to be less or equal than `kSwizzleDMode`
# bytes, so `BLOCK_N * sizeof(T) / kSwizzleDMode` TMA stores are required
return make_2d_tma_desc(t,
shape_n, shape_m * (num_groups if gemm_type != GemmType.Normal else 1), m_stride,
min(block_n, shape_n), min(block_m, shape_m),
cbd.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE)
def make_2d_tma_scales_b_offset_desc_swapAB(gemm_type: GemmType, t: torch.Tensor,
max_n_padded_total: int, shape_k: int,
block_n: int, block_k: int,
global_stride_in_bytes: int = 0) -> cbd.CUtensorMap:
return make_2d_tma_desc(t,
max_n_padded_total, ceil_div(shape_k, block_k), max_n_padded_total,
block_n, 1,
cbd.CUtensorMapSwizzle.CU_TENSOR_MAP_SWIZZLE_NONE)
class FP8GemmRuntime(Runtime):
def __init__(self, path: str) -> None:
super().__init__(path)
@ -316,3 +371,101 @@ static void __instantiate_kernel() {{
None,
)
return cbd.cuLaunchKernelEx(config, kernel, (arg_values, arg_types), 0)
class FP8GemmOffsetRuntime(Runtime):
def __init__(self, path: str) -> None:
super().__init__(path)
@staticmethod
def generate(kwargs: Dict[str, Any]) -> str:
code = f'''
#ifdef __CUDACC_RTC__
#include <deep_gemm/nvrtc_std.cuh>
#else
#include <cuda.h>
#include <string>
#endif
#include <cuda_bf16.h>
#include <cuda_fp8.h>
#include <deep_gemm/fp8_gemm.cuh>
using namespace deep_gemm;
using SchedulerType =
typename {kwargs['SCHEDULER_TYPE']} <GemmType::GroupedWithOffset, {kwargs['N']},
{kwargs['K']}, {kwargs['BLOCK_M']}, {kwargs['BLOCK_N']},
{kwargs['BLOCK_K']}, {kwargs['NUM_GROUPS']}, {kwargs['NUM_TMA_MULTICAST']}>::type;
static void __instantiate_kernel() {{
auto ptr = reinterpret_cast<void*>(&{kwargs['KERNEL_NAME']}<
{kwargs['N']},
{kwargs['K']},
{kwargs['BLOCK_M']},
{kwargs['BLOCK_N']},
{kwargs['BLOCK_K']},
{kwargs['NUM_GROUPS']},
{kwargs['NUM_STAGES']},
{kwargs['NUM_TMA_THREADS']},
{kwargs['NUM_MATH_THREADS_PER_GROUP']},
{kwargs['NUM_TMA_MULTICAST']},
SchedulerType,
{kwargs['INPUT_TYPE']}
>);
}};
'''
if int(os.getenv('DG_JIT_DEBUG', 0)):
print(f'Generated FP8 GEMM code:\n{code}')
return code
# noinspection PyMethodOverriding
@staticmethod
def launch(kernel: cbd.CUkernel, kwargs: Dict[str, Any]) -> cbd.CUresult:
num_tma_threads = 128
num_math_threads_per_group = 128
result = cbd.cuKernelSetAttribute(cbd.CUfunction_attribute.CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES,
kwargs['SMEM_SIZE'], kernel, cbd.CUdevice(kwargs['DEVICE_INDEX']))[0]
assert result == cbd.CUresult.CUDA_SUCCESS, f'Failed to set max dynamic shared memory size: {result}'
attr_val = cbd.CUlaunchAttributeValue()
attr_val.clusterDim.x = kwargs['NUM_TMA_MULTICAST']
attr_val.clusterDim.y = 1
attr_val.clusterDim.z = 1
attr = cbd.CUlaunchAttribute()
attr.id = cbd.CUlaunchAttributeID.CU_LAUNCH_ATTRIBUTE_CLUSTER_DIMENSION
attr.value = attr_val
config = cbd.CUlaunchConfig()
config.numAttrs = 1
config.attrs = [attr]
config.gridDimX = kwargs['NUM_SMS']
config.gridDimY = 1
config.gridDimZ = 1
config.blockDimX = get_num_threads_per_sm(num_tma_threads, num_math_threads_per_group, kwargs['BLOCK_M'])
config.blockDimY = 1
config.blockDimZ = 1
config.sharedMemBytes = kwargs['SMEM_SIZE']
config.hStream = kwargs['STREAM']
arg_values = (
kwargs['OUT'].data_ptr(),
kwargs['SCALES'].data_ptr(),
kwargs['PROBLEM_OFFSETS'].data_ptr(),
kwargs['TENSOR_MAP_A'],
kwargs['TENSOR_MAP_B'],
kwargs['TENSOR_MAP_SCALES'],
kwargs['TENSOR_MAP_D'],
)
arg_types = (
ctypes.c_void_p,
ctypes.c_void_p,
ctypes.c_void_p,
None,
None,
None,
None,
)
return cbd.cuLaunchKernelEx(config, kernel, (arg_values, arg_types), 0)

View File

@ -107,3 +107,6 @@ def get_col_major_tma_aligned_tensor(x: torch.Tensor) -> torch.Tensor:
aligned_x[:, :m, :] = x
aligned_x = aligned_x[:, :m, :]
return aligned_x.squeeze(0) if remove_dim else aligned_x
def compute_padded_offset(offset, idx_problem, alignment=32):
return (offset + idx_problem * (alignment - 1)) // alignment * alignment

View File

@ -34,49 +34,6 @@ def per_block_cast_to_fp8(x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
return x_scaled.view_as(x_padded)[:m, :n].contiguous(), (x_amax / 448.0).view(x_view.size(0), x_view.size(2))
def construct(m: int, k: int, n: int) -> \
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor]:
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
y = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
out = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
ref_out = x @ y.t()
x_fp8, y_fp8 = per_token_cast_to_fp8(x), per_block_cast_to_fp8(y)
# Transpose earlier so that the testing will not trigger transposing kernels
x_fp8 = (x_fp8[0], get_col_major_tma_aligned_tensor(x_fp8[1]))
return x_fp8, y_fp8, out, ref_out
def construct_contiguous_grouped(num_groups: int, expected_m_per_group: int, k: int, n: int) -> \
Tuple[int, Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
alignment = get_m_alignment_for_contiguous_layout()
group_ms = [int(expected_m_per_group * random.uniform(0.7, 1.3)) for _ in range(num_groups)]
m = sum([ceil_div(x, alignment) * alignment for x in group_ms])
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
y = torch.randn((num_groups, n, k), device='cuda', dtype=torch.bfloat16)
m_indices = torch.empty(m, device='cuda', dtype=torch.int32)
out = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
ref_out = torch.randn((m, n), device='cuda', dtype=torch.bfloat16)
start = 0
for i, group_m in enumerate(group_ms):
actual_end = start + group_m
aligned_end = start + ceil_div(group_m, alignment) * alignment
m_indices[start:actual_end] = i
m_indices[actual_end:aligned_end] = -1
ref_out[start:aligned_end] = x[start:aligned_end] @ y[i].t()
start = aligned_end
ref_out = torch.where((m_indices == -1).unsqueeze(1), torch.zeros_like(ref_out), ref_out)
assert m % 4 == 0, f'TMA alignment error: {m}'
x_fp8 = per_token_cast_to_fp8(x)
y_fp8 = (torch.empty_like(y, dtype=torch.float8_e4m3fn), torch.empty((num_groups, ceil_div(n, 128), k // 128), device='cuda', dtype=torch.float))
for i in range(num_groups):
y_fp8[0][i], y_fp8[1][i] = per_block_cast_to_fp8(y[i])
return m, x_fp8, y_fp8, m_indices, out, ref_out
def construct_masked_grouped(num_groups: int, max_m: int, expected_m_per_group: int, k: int, n: int) -> \
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
@ -98,120 +55,10 @@ def construct_masked_grouped(num_groups: int, max_m: int, expected_m_per_group:
# Construct mask
masked_m = torch.empty((num_groups, ), device='cuda', dtype=torch.int)
for j in range(num_groups):
masked_m[j] = int(expected_m_per_group * random.uniform(0.7, 1.3))
masked_m[j] = int(expected_m_per_group * random.uniform(1, 1))
assert masked_m.amax().item() <= max_m
return x_fp8, y_fp8, masked_m, out, ref_out
def construct_wgrad(m: int, k: int, n: int) -> \
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
y = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
residual = torch.randn((m, n), device='cuda', dtype=torch.float) * 10
out = residual.clone()
ref_out = residual + (x.float() @ y.float().t())
x_fp8 = per_token_cast_to_fp8(x)
y_fp8 = per_token_cast_to_fp8(y)
# NOTES: please do inplace add on the `out` later
return x_fp8, y_fp8, residual, out, ref_out
def construct_k_grouped_wgrad(m: int, n: int, k_sizes: List[int]) -> \
Tuple[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, List[int]]:
num_groups, total_k = len(k_sizes), sum(k_sizes)
x_flat = torch.empty((m * total_k,), device='cuda', dtype=torch.bfloat16)
y_flat = torch.empty((n * total_k,), device='cuda', dtype=torch.bfloat16)
out = torch.zeros((num_groups, m, n), device='cuda', dtype=torch.float)
ref_out = torch.zeros((num_groups, m, n), device='cuda', dtype=torch.float)
# Fill tensors with data and compute reference output
x_offset, y_offset = 0, 0
for idx, k in enumerate(k_sizes):
x_chunk = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
y_chunk = torch.randn((n, k), device='cuda', dtype=torch.bfloat16)
x_flat[x_offset:x_offset + m * k].copy_(x_chunk.flatten())
y_flat[y_offset:y_offset + n * k].copy_(y_chunk.flatten())
ref_out[idx] = x_chunk.float() @ y_chunk.float().t()
x_offset += m * k
y_offset += n * k
x_fp8_flat = torch.empty_like(x_flat, dtype=torch.float8_e4m3fn)
y_fp8_flat = torch.empty_like(y_flat, dtype=torch.float8_e4m3fn)
total_scale_factors = sum(ceil_div(k, 128) for k in k_sizes)
x_scales = torch.empty((total_scale_factors, m), device='cuda', dtype=torch.float)
y_scales = torch.empty((total_scale_factors, n), device='cuda', dtype=torch.float)
# Cast to FP8 and prepare scale factors
x_offset, y_offset, scale_offset = 0, 0, 0
for k in k_sizes:
x_fp8_chunk, x_scale_chunk = per_token_cast_to_fp8(x_flat[x_offset:x_offset + m * k].view(m, k))
y_fp8_chunk, y_scale_chunk = per_token_cast_to_fp8(y_flat[y_offset:y_offset + n * k].view(n, k))
x_fp8_flat[x_offset:x_offset + m * k].copy_(x_fp8_chunk.flatten())
y_fp8_flat[y_offset:y_offset + n * k].copy_(y_fp8_chunk.flatten())
num_scales = ceil_div(k, 128)
x_scales[scale_offset:scale_offset + num_scales].copy_(x_scale_chunk.T)
y_scales[scale_offset:scale_offset + num_scales].copy_(y_scale_chunk.T)
x_offset += m * k
y_offset += n * k
scale_offset += num_scales
return (x_fp8_flat, x_scales), (y_fp8_flat, y_scales), out, ref_out, k_sizes
def test_gemm() -> None:
print('Testing GEMM:')
for m in (64, 128, 4096):
for k, n in [(576, 7168), (7168, 2112), (1536, 24576), (512, 32768), (16384, 7168), (7168, 4096), (2048, 7168)]:
x_fp8, y_fp8, out, ref_out = construct(m, k, n)
deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8, y_fp8, out)
diff = calc_diff(out, ref_out)
assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
# noinspection PyShadowingNames
def test_func():
deep_gemm.gemm_fp8_fp8_bf16_nt(x_fp8, y_fp8, out)
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
print(f' > Perf (m={m:5}, n={n:5}, k={k:5}): {t * 1e6:4.0f} us | '
f'throughput: {2 * m * n * k / t / 1e12:4.0f} TFLOPS, '
f'{(m * k + k * n + m * n * 2) / 1e9 / t:4.0f} GB/s')
print()
def test_m_grouped_gemm_contiguous() -> None:
print('Testing grouped contiguous GEMM:')
for num_groups, expected_m_per_group, k, n in ((4, 8192, 7168, 4096), (4, 8192, 2048, 7168),
(8, 4096, 7168, 4096), (8, 4096, 2048, 7168),
(32, 256, 7168, 4096), (32, 256, 2048, 7168)):
# NOTES: we should mask the unfilled part before calculating difference
m, x_fp8, y_fp8, m_indices, out, ref_out = construct_contiguous_grouped(num_groups, expected_m_per_group, k, n)
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(x_fp8, y_fp8, out, m_indices)
out = torch.where((m_indices == -1).unsqueeze(1), torch.zeros_like(out), out)
diff = calc_diff(out, ref_out)
assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
# noinspection PyShadowingNames
def test_func():
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_contiguous(x_fp8, y_fp8, out, m_indices)
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
valid_m = (m_indices != -1).sum().item()
print(f' > Perf ({num_groups=:2}, {expected_m_per_group=:4}, n={n:4}, k={k:4}): {t * 1e6:4.0f} us | '
f'throughput: {2 * valid_m * n * k / t / 1e12:4.0f} TFLOPS, '
f'{(valid_m * k + num_groups * k * n + valid_m * n * 2) / 1e9 / t:4.0f} GB/s')
print()
def test_m_grouped_gemm_masked() -> None:
print('Testing grouped masked GEMM:')
@ -239,60 +86,85 @@ def test_m_grouped_gemm_masked() -> None:
print()
def test_wgrad_gemm():
print('Testing weight gradient GEMM:')
def construct_offset_grouped(num_groups: int, expected_m_per_group: int, k: int, n: int) -> \
Tuple[int, Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor], torch.Tensor, torch.Tensor, torch.Tensor]:
alignment = 32
group_ms = [int(expected_m_per_group * random.uniform(1, 1)) for _ in range(num_groups)]
m = sum([ceil_div(x, alignment) * alignment for x in group_ms])
for k in (4096, 8192):
for m, n in ((7168, 2112), (1536, 24576), (512, 32768), (16384, 7168), (7168, 4096), (2048, 7168)):
# Test correctness
x_fp8, y_fp8, residual, out, ref_out = construct_wgrad(m, k, n)
deep_gemm.wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out)
diff = calc_diff(out, ref_out)
assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
x = torch.randn((m, k), device='cuda', dtype=torch.bfloat16)
y = torch.randn((num_groups, n, k), device='cuda', dtype=torch.bfloat16)
offsets = torch.empty(num_groups+1, device='cuda', dtype=torch.int32)
out = torch.empty((m, n), device='cuda', dtype=torch.bfloat16)
ref_out = torch.randn((m, n), device='cuda', dtype=torch.bfloat16)
# Construct new tensors only once to avoid L2 cache acceleration (creating them puts them in L2)
x_fp8, y_fp8, residual, out, ref_out = construct_wgrad(m, k, n)
start = 0
offsets[0] = 0
for i, group_m in enumerate(group_ms):
aligned_end = start + ceil_div(group_m, alignment) * alignment
offsets[i+1] = aligned_end
ref_out[start:aligned_end] = x[start:aligned_end] @ y[i].t()
start = aligned_end
# noinspection PyShadowingNames
def test_func():
deep_gemm.wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out)
assert m % 4 == 0, f'TMA alignment error: {m}'
x_fp8 = per_token_cast_to_fp8(x)
y_fp8 = (torch.empty_like(y, dtype=torch.float8_e4m3fn), torch.empty((num_groups, ceil_div(n, 128), k // 128), device='cuda', dtype=torch.float))
for i in range(num_groups):
y_fp8[0][i], y_fp8[1][i] = per_block_cast_to_fp8(y[i])
t = bench_kineto(test_func, 'fp8_wgrad_gemm', suppress_kineto_output=True)
print(f' > Performance (m={m:5}, n={n:5}, k={k:5}): {t * 1e6:4.0f} us | '
f'throughput: {2 * m * n * k / t / 1e12:4.0f} TFLOPS, '
f'{(m * k + k * n + m * n * 2) / 1e9 / t:4.0f} GB/s')
return m, x_fp8, y_fp8, offsets, out, ref_out
def test_m_grouped_gemm_offset() -> None:
print('Testing grouped contiguous GEMM:')
for num_groups, expected_m_per_group, k, n in ((8, 32, 7168, 4096),):
# NOTES: we should mask the unfilled part before calculating difference
'''
x_fp8_mask, y_fp8_mask, masked_m_mask, out_mask, ref_out_mask = construct_masked_grouped(num_groups, expected_m_per_group, expected_m_per_group, k, n)
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(x_fp8_mask, y_fp8_mask, out_mask, masked_m_mask, expected_m_per_group)
for j in range(num_groups):
diff = calc_diff(out_mask[j, :masked_m_mask[j].item()], ref_out_mask[j, :masked_m_mask[j].item()])
#assert diff < 0.001, f'{expected_m_per_group=}, {k=}, {n=}, {j=}, masked_m={masked_m_mask[j]}, {num_groups=}, {diff:.5f}'
# noinspection PyShadowingNames
def test_func():
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_masked(x_fp8_mask, y_fp8_mask, out_mask, masked_m_mask, expected_m_per_group)
# Test performance with fixed shapes
# noinspection PyUnboundLocalVariable
valid_m = masked_m_mask.sum().item()
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
print(f' > m_grouped_gemm_fp8_fp8_bf16_nt_masked: Perf ({num_groups=}, expected_m_per_group={expected_m_per_group:4}, n={n:4}, k={k:4}): {t * 1e6:4.0f} us | '
f'throughput: {2 * valid_m * n * k / t / 1e12:4.0f} TFLOPS, '
f'{(valid_m * k + num_groups * k * n + valid_m * n * 2) / 1e9 / t:4.0f} GB/s')
'''
m_offset, x_fp8_offset, y_fp8_offset, offset, out_offset, ref_out_offset = construct_offset_grouped(num_groups, expected_m_per_group, k, n)
#deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_offset(x_fp8_offset, y_fp8_offset, offset, out_offset, expected_m_per_group)
#diff = calc_diff(out_offset, ref_out_offset)
# assert diff < 0.001, f'{m=}, {k=}, {n=}, {diff:.5f}'
# noinspection PyShadowingNames
def test_func():
deep_gemm.m_grouped_gemm_fp8_fp8_bf16_nt_offset(x_fp8_offset, y_fp8_offset, offset, out_offset, expected_m_per_group)
t = bench_kineto(test_func, 'fp8_gemm', suppress_kineto_output=True)
valid_m = m_offset
print(f' > m_grouped_gemm_fp8_fp8_bf16_nt_offset: Perf ({num_groups=:2}, {expected_m_per_group=:4}, n={n:4}, k={k:4}): {t * 1e6:4.0f} us | '
f'throughput: {2 * valid_m * n * k / t / 1e12:4.0f} TFLOPS, '
f'{(valid_m * k + num_groups * k * n + valid_m * n * 2) / 1e9 / t:4.0f} GB/s')
print()
def test_k_grouped_wgrad_gemm():
print('Testing grouped weight gradient GEMM:')
for num_groups, base_k in ((4, 4096), (4, 8192), (8, 4096)):
for m, n in ((7168, 4096), (2048, 7168)):
# Vary k sizes around base_k
k_sizes = [base_k + random.randint(-1, 1) * 128 for _ in range(num_groups - 1)]
k_sizes.append(base_k * num_groups - sum(k_sizes))
# Test correctness
x_fp8, y_fp8, out, ref_out, k_sizes = construct_k_grouped_wgrad(m, n, k_sizes)
deep_gemm.k_grouped_wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out, k_sizes)
for idx in range(num_groups):
diff = calc_diff(out[idx], ref_out[idx])
assert diff < 0.001, f'{num_groups=}, {m=}, {n=}, k={k_sizes[idx]}, batch={idx}, {diff:.5f}'
# Construct new tensors to avoid L2 cache acceleration
x_fp8, y_fp8, out, ref_out, k_sizes = construct_k_grouped_wgrad(m, n, k_sizes)
total_k = sum(k_sizes)
def test_func():
deep_gemm.k_grouped_wgrad_gemm_fp8_fp8_fp32_nt(x_fp8, y_fp8, out, k_sizes)
t = bench_kineto(test_func, 'fp8_wgrad_gemm', suppress_kineto_output=True, with_multiple_kernels=True) * num_groups
print(f' > Performance ({num_groups=}, m={m:5}, n={n:5}, avg_k={total_k//num_groups:5}): {t * 1e6:4.0f} us | '
f'throughput: {2 * num_groups * m * n * (total_k/num_groups) / t / 1e12:4.0f} TFLOPS, '
f'{(m * total_k + n * total_k + num_groups * m * n * 2) / 1e9 / t:4.0f} GB/s')
print()
if __name__ == '__main__':
@ -304,9 +176,4 @@ if __name__ == '__main__':
print('Library path:')
print(f' > {deep_gemm.__path__}\n')
test_gemm()
test_m_grouped_gemm_contiguous()
test_m_grouped_gemm_masked()
test_wgrad_gemm()
test_k_grouped_wgrad_gemm()
test_m_grouped_gemm_offset()