DeepEP/third-party/README.md
2025-03-05 16:16:52 +08:00

132 lines
4.0 KiB
Markdown

# Install NVSHMEM
## Important notices
**This project is neither sponsored nor supported by NVIDIA.**
**Use of NVIDIA NVSHMEM is governed by the terms at [NVSHMEM Software License Agreement](https://docs.nvidia.com/nvshmem/api/sla.html).**
## Prerequisites
1. [GDRCopy](https://github.com/NVIDIA/gdrcopy) (v2.4 and above recommended) is a low-latency GPU memory copy library based on NVIDIA GPUDirect RDMA technology, and *it requires kernel module installation with root privileges.*
2. Hardware requirements
- GPUDirect RDMA capable devices, see [GPUDirect RDMA Documentation](https://docs.nvidia.com/cuda/gpudirect-rdma/)
- InfiniBand GPUDirect Async (IBGDA) support, see [IBGDA Overview](https://developer.nvidia.com/blog/improving-network-performance-of-hpc-systems-using-nvidia-magnum-io-nvshmem-and-gpudirect-async/)
- For more detailed requirements, see [NVSHMEM Hardware Specifications](https://docs.nvidia.com/nvshmem/release-notes-install-guide/install-guide/abstract.html#hardware-requirements)
## Installation procedure
### 1. Install GDRCopy
GDRCopy requires kernel module installation on the host system. Complete these steps on the bare-metal host before container deployment:
#### Build and installation
```bash
wget https://github.com/NVIDIA/gdrcopy/archive/refs/tags/v2.4.4.tar.gz
cd gdrcopy-2.4.4/
make -j$(nproc)
sudo make prefix=/opt/gdrcopy install
```
#### Kernel module installation
After compiling the software, you need to install the appropriate packages based on your Linux distribution.
For instance, using Ubuntu 22.04 and CUDA 12.3 as an example:
```bash
pushd packages
CUDA=/path/to/cuda ./build-deb-packages.sh
sudo dpkg -i gdrdrv-dkms_2.4.4_amd64.Ubuntu22_04.deb \
libgdrapi_2.4.4_amd64.Ubuntu22_04.deb \
gdrcopy-tests_2.4.4_amd64.Ubuntu22_04+cuda12.3.deb \
gdrcopy_2.4.4_amd64.Ubuntu22_04.deb
popd
sudo ./insmod.sh # Load kernel modules on the bare-metal system
```
#### Container environment notes
For containerized environments:
1. Host: keep kernel modules loaded (`gdrdrv`)
2. Container: install DEB packages *without* rebuilding modules:
```bash
sudo dpkg -i gdrcopy_2.4.4_amd64.Ubuntu22_04.deb \
libgdrapi_2.4.4_amd64.Ubuntu22_04.deb \
gdrcopy-tests_2.4.4_amd64.Ubuntu22_04+cuda12.3.deb
```
#### Verification
```bash
gdrcopy_copybw # Should show bandwidth test results
```
### 2. Acquiring NVSHMEM source code
Download NVSHMEM v3.2.5 from the [NVIDIA NVSHMEM OPEN SOURCE PACKAGES](https://developer.nvidia.com/downloads/assets/secure/nvshmem/nvshmem_src_3.2.5-1.txz).
### 3. Apply our custom patch
Navigate to your NVSHMEM source directory and apply our provided patch:
```bash
git apply /path/to/deep_ep/dir/third-party/nvshmem.patch
```
### 4. Configure NVIDIA driver
Enable IBGDA by modifying `/etc/modprobe.d/nvidia.conf`:
```bash
options nvidia NVreg_EnableStreamMemOPs=1 NVreg_RegistryDwords="PeerMappingOverride=1;"
```
Update kernel configuration:
```bash
sudo update-initramfs -u
sudo reboot
```
For more detailed configurations, please refer to the [NVSHMEM Installation Guide](https://docs.nvidia.com/nvshmem/release-notes-install-guide/install-guide/abstract.html).
### 5. Build and installation
The following example demonstrates building NVSHMEM with IBGDA support:
```bash
CUDA_HOME=/path/to/cuda \
GDRCOPY_HOME=/path/to/gdrcopy \
NVSHMEM_SHMEM_SUPPORT=0 \
NVSHMEM_UCX_SUPPORT=0 \
NVSHMEM_USE_NCCL=0 \
NVSHMEM_MPI_SUPPORT=0 \
NVSHMEM_IBGDA_SUPPORT=1 \
NVSHMEM_PMIX_SUPPORT=0 \
NVSHMEM_TIMEOUT_DEVICE_POLLING=0 \
NVSHMEM_USE_GDRCOPY=1 \
cmake -S . -B build/ -DCMAKE_INSTALL_PREFIX=/path/to/your/dir/to/install
cd build
make -j$(nproc)
make install
```
## Post-installation configuration
Set environment variables in your shell configuration:
```bash
export NVSHMEM_DIR=/path/to/your/dir/to/install # Use for DeepEP installation
export LD_LIBRARY_PATH="${NVSHMEM_DIR}/lib:$LD_LIBRARY_PATH"
export PATH="${NVSHMEM_DIR}/bin:$PATH"
```
## Verification
```bash
nvshmem-info -a # Should display details of nvshmem
```