mirror of
https://github.com/clearml/clearml
synced 2025-02-01 01:26:49 +00:00
103 lines
3.4 KiB
Python
103 lines
3.4 KiB
Python
import sys
|
|
|
|
import six
|
|
from pathlib2 import Path
|
|
|
|
from ...binding.frameworks.base_bind import PatchBaseModelIO
|
|
from ..frameworks import _patched_call, WeightsFileHandler, _Empty
|
|
from ..import_bind import PostImportHookPatching
|
|
from ...config import running_remotely
|
|
from ...model import Framework
|
|
|
|
|
|
class PatchPyTorchModelIO(PatchBaseModelIO):
|
|
__main_task = None
|
|
__patched = None
|
|
|
|
@staticmethod
|
|
def update_current_task(task, **_):
|
|
PatchPyTorchModelIO.__main_task = task
|
|
PatchPyTorchModelIO._patch_model_io()
|
|
PostImportHookPatching.add_on_import('torch', PatchPyTorchModelIO._patch_model_io)
|
|
|
|
@staticmethod
|
|
def _patch_model_io():
|
|
if PatchPyTorchModelIO.__patched:
|
|
return
|
|
|
|
if 'torch' not in sys.modules:
|
|
return
|
|
|
|
PatchPyTorchModelIO.__patched = True
|
|
|
|
# noinspection PyBroadException
|
|
try:
|
|
# hack: make sure tensorflow.__init__ is called
|
|
import torch
|
|
torch.save = _patched_call(torch.save, PatchPyTorchModelIO._save)
|
|
torch.load = _patched_call(torch.load, PatchPyTorchModelIO._load)
|
|
except ImportError:
|
|
pass
|
|
except Exception:
|
|
pass # print('Failed patching pytorch')
|
|
|
|
@staticmethod
|
|
def _save(original_fn, obj, f, *args, **kwargs):
|
|
ret = original_fn(obj, f, *args, **kwargs)
|
|
if not PatchPyTorchModelIO.__main_task:
|
|
return ret
|
|
|
|
if isinstance(f, six.string_types):
|
|
filename = f
|
|
elif hasattr(f, 'name'):
|
|
filename = f.name
|
|
# noinspection PyBroadException
|
|
try:
|
|
f.flush()
|
|
except Exception:
|
|
pass
|
|
else:
|
|
filename = None
|
|
|
|
# give the model a descriptive name based on the file name
|
|
# noinspection PyBroadException
|
|
try:
|
|
model_name = Path(filename).stem
|
|
except Exception:
|
|
model_name = None
|
|
WeightsFileHandler.create_output_model(obj, filename, Framework.pytorch, PatchPyTorchModelIO.__main_task,
|
|
singlefile=True, model_name=model_name)
|
|
return ret
|
|
|
|
@staticmethod
|
|
def _load(original_fn, f, *args, **kwargs):
|
|
if isinstance(f, six.string_types):
|
|
filename = f
|
|
elif hasattr(f, 'name'):
|
|
filename = f.name
|
|
else:
|
|
filename = None
|
|
|
|
if not PatchPyTorchModelIO.__main_task:
|
|
return original_fn(f, *args, **kwargs)
|
|
|
|
# register input model
|
|
empty = _Empty()
|
|
if running_remotely():
|
|
filename = WeightsFileHandler.restore_weights_file(empty, filename, Framework.pytorch,
|
|
PatchPyTorchModelIO.__main_task)
|
|
model = original_fn(filename or f, *args, **kwargs)
|
|
else:
|
|
# try to load model before registering, in case we fail
|
|
model = original_fn(filename or f, *args, **kwargs)
|
|
WeightsFileHandler.restore_weights_file(empty, filename, Framework.pytorch,
|
|
PatchPyTorchModelIO.__main_task)
|
|
|
|
if empty.trains_in_model:
|
|
# noinspection PyBroadException
|
|
try:
|
|
model.trains_in_model = empty.trains_in_model
|
|
except Exception:
|
|
pass
|
|
return model
|